STtering witnesses FOR GIUSSIAN STATES

Tatiana Mihaescu ${ }^{1}$, Hermann Kampermann ${ }^{2}$, Aurelian Isar ${ }^{1}$, Dagmar Bruss ${ }^{2}$

1. National Institute for Physics and Nuclear Engineering, Department of Theoretical Physics, Bucharest, Romania
2. Heinrich-Heine-Universitat Dusseldorf, Institut fur Theoretische Physik III, Duesseldorf, Germany

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

Alice: z direction

EPR PAPER

Einstein - Podolski - Rosen Paradox
"Can Quantum-Mechanical description of Physical Reality be Considered Complete?"
(1935)

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

Alice: z direction

EPR PAPER

Einstein - Podolski - Rosen Paradox
"Can Quantum-Mechanical description of Physical Reality be Considered Complete?"
(1935)

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

Alice: z direction

Bob's state

EPR PAPER

Einstein - Podolski - Rosen Paradox
"If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity."

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

EPR PAPER

Einstein - Podolski - Rosen Paradox
"If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity."

Bob's state
Alice: z direction

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

EPR PAPER

Einstein - Podolski - Rosen Paradox
"In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one precludes the knowledge of the other.
Then either (1) the description of reality given by the wave function in quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality."

Alice: x direction
Bob's state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

EPR PAPER

Einstein - Podolski - Rosen Paradox
"In quantum mechanics in the case of two physical quantities described by non-commuting operators, the knowledge of one precludes the knowledge of the other.
Then either (1) the description of reality given by the wave function in quantum mechanics is not complete or (2) these two quantities cannot have simultaneous reality."

Alice: x direction
Bob's state

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

Alice: x direction
Bob's state

EPR PAPER

Einstein - Podolski - Rosen Paradox
"We are thus forced to conclude that the quantum-mechanical description of physical reality given by wave functions is not complete."

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle),
$$

where $|0\rangle=\left|z^{+}\right\rangle$and $|1\rangle=\left|z^{-}\right\rangle$denote the two possible spin orientations in z-direction.

Alice: x direction
Bob's state

EPR PAPER

Einstein - Podolski - Rosen Paradox
"We are thus forced to conclude that the quantum-mechanical description of physical reality given by wave functions is not complete."

BELL TEST

"On the Einstein Podolski Rosen paradox" (1964)

Local Realism?
Local Hidden Variable?

BELL TEST

Alice
Measurements: $A, \quad a \in\{ \pm 1\}$
$A^{\prime}, \quad a^{\prime} \in\{ \pm 1\}$
Bob
Measurements: $\quad B, \quad b \in\{ \pm 1\}$
$B^{\prime}, b^{\prime} \in\{ \pm 1\}$

Outcomes: $A, \quad a \in\{ \pm 1\}$

$$
A^{\prime}, \quad a^{\prime} \in\{ \pm 1\}
$$

Outcomes: $\quad B, \quad b \in\{ \pm 1\}$
$B^{\prime}, \quad b^{\prime} \in\{ \pm 1\}$
Local Realism:

Quantum mechanics:

Outcomes: $A, \quad a \in\{ \pm 1\}$

$$
A^{\prime}, \quad a^{\prime} \in\{ \pm 1\}
$$

a	a^{\prime}	b	b^{3}
+1	+1	+1	-1
+1	+1	-1	+1
+1	-1	+1	+1
\ldots	\ldots	\ldots	\ldots

Outcomes: $\quad B, \quad b \in\{ \pm 1\}$

$$
B^{\prime}, \quad b^{\prime} \in\{ \pm 1\}
$$

Local Realism:

$$
a b+a^{\prime} b+a b^{\prime}-a^{\prime} b^{\prime} \leq 2
$$

Quantum mechanics:

Outcomes: $A, \quad a \in\{ \pm 1\}$

$$
A^{\prime}, \quad a^{\prime} \in\{ \pm 1\}
$$

$$
\begin{array}{lll}
\text { Outcomes: } & B, & b \in\{ \pm 1\} \\
& B^{\prime}, & b^{\prime} \in\{ \pm 1\}
\end{array}
$$

Local Realism:

$$
a b+a^{\prime} b+a b^{\prime}-a^{\prime} b^{\prime} \leq 2
$$

Quantum mechanics:
$\langle A B\rangle+\left\langle A^{\prime} B\right\rangle+\left\langle A B^{\prime}\right\rangle-\left\langle A^{\prime} B^{\prime}\right\rangle \leq 2 \sqrt{2}$

Outcomes: $A, \quad a \in\{ \pm 1\}$

$$
A^{\prime}, \quad a^{\prime} \in\{ \pm 1\}
$$

$$
\begin{array}{lll}
\text { Outcomes: } & B, & b \in\{ \pm 1\} \\
& B^{\prime}, & b^{\prime} \in\{ \pm 1\}
\end{array}
$$

Local Realism:

$$
a b+a^{\prime} b+a b^{\prime}-a^{\prime} b^{\prime} \leq 2
$$

Quantum mechanics:

$$
\langle A B\rangle+\left\langle A^{\prime} B\right\rangle+\left\langle A B^{\prime}\right\rangle-\left\langle A^{\prime} B^{\prime}\right\rangle \leq 2 \sqrt{2}
$$

Outcomes: $A, \quad a \in\{ \pm 1\}$

$$
A^{\prime}, \quad a^{\prime} \in\{ \pm 1\}
$$

$$
\begin{array}{lll}
\text { Outcomes: } & B, & b \in\{ \pm 1\} \\
& B^{\prime}, & b^{\prime} \in\{ \pm 1\}
\end{array}
$$

Local Realism:

$$
a b+a^{\prime} b+a b^{\prime}-a^{\prime} b^{\prime} \leq 2
$$

Quantum mechanics:

$$
\langle A B\rangle+\left\langle A^{\prime} B\right\rangle+\left\langle A B^{\prime}\right\rangle-\left\langle A^{\prime} B^{\prime}\right\rangle \leq 2 \sqrt{2}
$$

BELL NONLOCALITY
Failure of Local Hiddenn Variable (LHV) model

$$
p(a, b \mid x, y)=\int d \lambda p(\lambda) p(a \mid x, \lambda) p(b \mid y, \lambda)
$$

SIEFRING Failure of Hybrid LHV - LQS model

ENTANGLEMENT

Failure of Local Quantum State (LQS) model
Entanglement

BELL NONLOCALITY
Failure of Local Hiddenn Variable (LHV) model

$$
p(a, b \mid x, y)=\int d \lambda p(\lambda) p(a \mid x, \lambda) p(b \mid y, \lambda)
$$

SIEFRING Failure of Hybrid LHV - LQS model

ENTHNGLEMENT

Failure of Local Quantum State (LQS) model

$$
\begin{gathered}
p(a, b \mid x, y)=\sum_{k} p_{k} \operatorname{Tr}\left[E_{a \mid x} \rho_{k}^{A}\right] \operatorname{Tr}\left[E_{b \mid x} \rho_{k}^{B}\right] \\
\rho=\sum_{k} \rho_{k}^{A} \otimes \rho_{k}^{B}
\end{gathered}
$$

BELL NONLOCALITY
Failure of Local Hiddenn Variable (LHV) model

$$
p(a, b \mid x, y)=\int d \lambda p(\lambda) p(a \mid x, \lambda) p(b \mid y, \lambda)
$$

STEFRING Failure of Hybrid LHV - LQS model

$$
p(a, b \mid x, y)=\int d \lambda p(\lambda) p(a \mid x, \lambda) \operatorname{Tr}\left[E_{b \mid y}\right] \sigma_{\lambda}^{B}
$$

ENTANGLEMENT

Failure of Local Quantum State (LQS) model

$$
\begin{gathered}
p(a, b \mid x, y)=\sum_{k} p_{k} \operatorname{Tr}\left[E_{a \mid x} \rho_{k}^{A}\right] \operatorname{Tr}\left[E_{b \mid x} \rho_{k}^{B}\right] \\
\rho=\sum_{k} \rho_{k}^{A} \otimes \rho_{k}^{B}
\end{gathered}
$$

cONTENTS

> Continuous Variable States

* Gaussian states
* Covariance matrix (variances)
> Gaussian Steering
* Witnesses method
$>$ Detection strategy
\square Random measurements
\square Semidefinite programming

Situation

You encounter a CV state of unknown origin.

Question

Do you always need full information about the state in order to detect steering?

Our method

Construct steering witnesses from random
 homodyne measurements.

CONTINUOUS VARIABLE STATES

N bosonic modes: $\mathcal{H}=\bigotimes_{k=1}^{N} \mathcal{H}_{k}$

$$
\hat{R}^{\mathrm{T}} \equiv\left(\hat{R}_{1}, \ldots, \hat{R}_{2 N}\right)=\left(\hat{x}_{1}, \hat{p}_{1}, \ldots, \hat{x}_{N}, \hat{p}_{N}\right)
$$

CCM: $\quad\left[\hat{R}_{i}, \hat{R}_{j}\right]=\mathrm{i} \Omega_{i j} \hat{\mathbf{I}}, \quad i, j=1, \ldots, 2 N$
where $\quad \Omega_{i j} \equiv[\Omega]_{i j} \quad$ are the elements of:

$$
\Omega_{N}=\bigoplus_{1}^{N}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) .
$$

FOURIER-WEYL RELATION

- Complete set of operators:Weyl displacement operators

$$
\begin{gathered}
\hat{D}(r)=e^{i r^{T} \Omega_{N} \hat{R}} \\
r^{T}=\left(x_{1}, p_{1}, \ldots, x_{N}, p_{N}\right)-\text { a real vector of phase space variables. }
\end{gathered}
$$

- Fourier-Weyl relation

$$
\hat{\rho}=\frac{1}{(2 \pi)^{2 N}} \int_{\mathbb{R}^{2 N}} d^{2 N} r \operatorname{Tr}\left[\hat{D}^{\dagger}(r) \hat{\rho}\right] \hat{D}(r)
$$

where the characteristic function is given by

$$
\chi_{\rho}=\operatorname{Tr}\left[\hat{D}^{\dagger}(r) \hat{\rho}\right]
$$

ghUSSIAN STATES

- Characteristic function with zero first moments:

$$
\chi_{G}=e^{\frac{1}{4} r^{T} \Omega_{N}^{T} \gamma_{A B} \Omega_{N} r}
$$

- Covariance matrix (CM) $\gamma_{A B}$

$$
\gamma_{i j}=\left\langle\left\{\hat{\boldsymbol{R}}_{i}-\left\langle\hat{\boldsymbol{R}}_{i}\right\rangle, \hat{\boldsymbol{R}}_{j}-\left\langle\hat{\boldsymbol{R}}_{j}\right\rangle\right\}_{+}\right\rangle_{\rho}
$$

- Uncertainty relation:

$$
\gamma_{A B}+\mathbf{i} \Omega_{N} \geq 0
$$

- Bipartite CM

$$
\gamma_{A B}=\left(\begin{array}{cc}
\gamma_{A} & \gamma_{12} \\
\gamma_{12}^{\mathbf{T}} & \gamma_{B}
\end{array}\right)
$$

- Partial Gaussian measurements

$$
\operatorname{Tr}_{A}\left[\left(\hat{A} \otimes \hat{I}_{B}\right) \hat{\rho}\right]
$$

- Gaussian operator \hat{A} with CM T^{A}
- Conditional CM after measurement

$$
\gamma_{B}^{A}=\gamma_{B}-\gamma_{12}^{T}\left(\gamma_{A}+T^{A}\right)^{-1} \gamma_{12}
$$

Theorem 2. A bipartite quantum Gaussian state $\rho_{A B}$ is Alice \rightarrow Bob non-steerable by means of Gaussian measurements if and only if there exists a covariance matrix corresponding to Bob's system σ_{B} satisfying $\sigma_{B}+i \Omega_{N_{B}} \geq 0$, such that:

$$
\gamma_{A B} \geq 0_{A} \oplus \sigma_{B}
$$

CAUSSIAN STEERING

The set of non-steerable CMs by Gaussian measurements, similarly to the set of all CMs, forms a closed convex subset of the space of all covariance matrices.

Hahn-Banach Theorem
This allows to completely describe the set of non-steerable CMs by a family of linear inequalities representing the steering witnesses (SWs).

Theorem 4. A CM $\gamma_{A B}$ of two parties consisting of $N=N_{A}+N_{B}$ modes is Alice to Bob steerable by means of Gaussian measurements if and only if there exists a Z such that:

$$
\operatorname{Tr}\left[Z \gamma_{A B}\right]<1
$$

where Z is a real symmetric $2 N \times 2 N$ matrix satisfying

$$
Z \geq 0 \quad \text { and } \quad \operatorname{str}\left[Z_{B}\right] \geq \frac{1}{2},
$$

where Z_{B} denotes the principal submatrix of Z belonging to the subsystem of Bob. Matrices Z are called steering witnesses based on second moments.

STEERING WITNESSES

str - stands for the "symplectic trace" which is the sum of singular eigenvalues of the matrix.

We are going to construct the witness from the measurements.

Theorem 4. $A C M \gamma_{A B}$ of two parties consisting of $N=N_{A}+N_{B}$ modes is Alice to Bob steerable by means of Gaussian measurements if and only if there exists a Z such that:

$$
\operatorname{Tr}\left[Z \gamma_{A B}\right]<1
$$

where Z is a real symmetric $2 N \times 2 N$ matrix satisfying

$$
Z \geq 0 \quad \text { and } \quad \operatorname{str}\left[Z_{B}\right] \geq \frac{1}{2}
$$

where Z_{B} denotes the principal submatrix of Z belonging to the subsystem of Bob. Matrices Z are called steering witnesses based on second moments.

STEERING WITNESSES

str - stands for the "symplectic trace" which is the sum of singular eigenvalues of the matrix.

We are going to construct the witness from the measurements.

Theorem 4. $A C M \gamma_{A B}$ of two parties consisting of $N=N_{A}+N_{B}$ modes is Alice to Bob steerable by means of Gaussian measurements if and only if there exists a Z such that:

$$
\operatorname{Tr}\left[Z \gamma_{A B}\right]<1
$$

where Z is a real symmetric $2 N \times 2 N$ matrix satisfying

$$
Z \geq 0 \quad \text { and } \quad \operatorname{str}\left[Z_{B}\right] \geq \frac{1}{2}
$$

where Z_{B} denotes the principal submatrix of Z belonging to the subsystem of Bob. Matrices Z are called steering witnesses based on second moments.

$$
Z_{B}+i \frac{1}{2 N_{B}} \Omega_{B} \geq 0
$$

Theorem 4. $A C M \gamma_{A B}$ of two parties consisting of $N=N_{A}+N_{B}$ modes is Alice to Bob steerable by means of Gaussian measurements if and only if there exists a Z such that:

$$
\operatorname{Tr}\left[Z \gamma_{A B}\right]<1
$$

where Z is a real symmetric $2 N \times 2 N$ matrix satisfying

$$
Z \geq 0 \quad \text { and } \quad \operatorname{str}\left[Z_{B}\right] \geq \frac{1}{2}
$$

where Z_{B} denotes the principal submatrix of Z belonging to the subsystem of Bob. Matrices Z are called steering witnesses based on second moments.

$$
Z_{B}+i \frac{1}{2 N_{B}} \Omega_{B} \geq 0
$$

STEERING WITNESSES

str - stands for the "symplectic trace" which is the sum of singular eigenvalues of the matrix.

We are going to construct the witness from the measurements.

HOMODYNE DETECTION

- Measurement direction θ
- Quadrature to be measured

$$
\hat{X}_{\theta}=\hat{x} \cos \theta+\hat{p} \sin \theta
$$

- Marginal probability distribution $\operatorname{Pr}\left(\hat{X}_{\theta}\right)$
- The variance

$$
\sigma^{2}=\left\langle\hat{X}_{\theta}^{2}\right\rangle-\left\langle\hat{X}_{\theta}\right\rangle^{2}=\operatorname{Tr}[P \gamma]
$$

where

$$
P=\left(\begin{array}{cc}
\cos ^{2} \theta & \cos \theta \sin \theta \\
\cos \theta \sin \theta & \sin ^{2} \theta
\end{array}\right)
$$

DETECTION SCHEME

- For two-mode states

$$
\hat{k}=\exp (\mathrm{i} \varphi) \cos \phi \hat{a}+\sin \phi \hat{b}
$$

- Generalized quadrature

$$
\hat{x}_{\theta}=\frac{\exp (-\mathrm{i} \theta) \hat{k}+\exp (\mathrm{i} \theta) \hat{k}^{\dagger}}{\sqrt{2}}
$$

FIG. 1: Experimental setup: A type-II OPO containing a periodically poled crystal (PPKTP) is pumped by the second harmonic of a Nd:YAG laser. At the OPO output, a half-wave plate $\left(\lambda / 2_{\text {out }}\right)$, a quarter-wave plate $\left(\lambda / 4_{\text {out }}\right)$ and a $\mathrm{PBS}_{\text {out }}$ select the mode for homodyning. The resulting electronic signal is acquired via a PC module.

OPTIMIZATION ALGORITHM

$$
\begin{array}{|ll}
\hline \operatorname{minimize} x: & \mathbf{c} \cdot \mathbf{m} \\
\text { subject to }: & Z=\sum_{i} c_{i} P_{i} \\
& Z \geq 0 \\
& Z_{A}+i x \Omega_{1} \geq 0 \\
& Z_{B}+i\left(\frac{1}{2}-x\right) \Omega_{1} \geq 0 \\
\text { where } \mathbf{m}=\operatorname{Tr}(\mathbf{P} \gamma) \text {, with } \mathbf{P} \text { the vector } \\
\text { of measurements } P_{i} .
\end{array}
$$

OPTIMIZATION ALGORITHM

$$
\begin{array}{ll}
\operatorname{minimize}_{x}: & \mathbf{c} \cdot \mathbf{m} \\
\text { subject to }: & Z=\sum_{i} c_{i} P_{i} \\
& Z \geq 0 \\
& Z_{A}+i x \Omega_{1} \geq 0 \\
& Z_{B}+i\left(\frac{1}{2}-x\right) \Omega_{1} \geq 0
\end{array}
$$

Performe a random measurement

OPTIMIZATION ALGORITHM

$$
\begin{array}{ll}
\operatorname{minimize}_{x}: & \mathbf{c} \cdot \mathbf{m} \\
\text { subject to }: & Z=\sum_{i} c_{i} P_{i} \\
& Z \geq 0 \\
& Z_{A}+i x \Omega_{1} \geq 0 \\
& Z_{B}+i\left(\frac{1}{2}-x\right) \Omega_{1} \geq 0
\end{array}
$$

Performe a random measurement

Perform the optimization

OPTIMILAHTION ALCORITHM

$$
\begin{array}{|ll}
\hline \operatorname{minimize} x: & \mathbf{c} \cdot \mathbf{m} \\
\text { subject to : } & Z=\sum_{i} c_{i} P_{i} \\
& Z \geq 0 \\
& Z_{A}+i x \Omega_{1} \geq 0 \\
& Z_{B}+i\left(\frac{1}{2}-x\right) \Omega_{1} \geq 0 \\
\text { where } \mathbf{m}=\operatorname{Tr}(\mathbf{P} \gamma) \text {, with } \mathbf{P} \text { the vector } \\
\text { of measurements } P_{i} .
\end{array}
$$

OPTIMILAHTION ALCORITHM

$$
\begin{array}{|ll}
\hline \operatorname{minimize}_{x}: & \mathbf{c} \cdot \mathbf{m} \\
\text { subject to : } & Z=\sum_{i} c_{i} P_{i} \\
& Z \geq 0 \\
& Z_{A}+i x \Omega_{1} \geq 0 \\
& Z_{B}+i\left(\frac{1}{2}-x\right) \Omega_{1} \geq 0 \\
\text { where } \mathbf{m}=\operatorname{Tr}(\mathbf{P} \gamma), \text { with } \mathbf{P} \text { the vector } \\
\text { of measurements } P_{i} .
\end{array}
$$

FIXED VALUE OF STEERING

- Two-mode covariance matrix
- Full tomography: 10 independent Measurements
- The data is normalized such that it sums up to 1 .

DETECTION IN RANDOM COVARIANCE MATRICES

Fraction of steering detection for two-mode randomly generated CMs.

It represents $5 \times 10^{\wedge} 5 \mathrm{runs}$ of the algorithm where measurement directions are added successively and SW is evaluated at every round until steering is certified.

The data is normalised for every value of steering such that they sum up to 1 .

$$
\Delta \bar{Z}=\sqrt{\frac{2}{n-1}} \sqrt{\sum_{i} c_{i}^{2} m_{i}^{2}}
$$

T. Mihaescu, H. Kampermann, A. Isar, D. Bruss (to be published)

STATISTICAL ANALISYS

The statistical estimate of Z^{-}with the maximum of 3σ confidence interval.

The horizontal black dashed line indicates the minimal value of the witness for the considered CM $\operatorname{Tr}[$ Zmin $\gamma]=0.7477$.
The vertical dashed lines indicate the number of measurement repetitions required to detect Gaussian steering with 7 (blue), 8 (orange) and 9 (green) measurement settings.

THANK YOU FOR ATTENTION!

