Notes on holoraphic Sasaki-Einstein backgrounds

H. Dimov*, R.C.Rashkov ${ }^{\star \dagger}$, T. Vetsov*
* Department of Physics, Sofia University,
† ITP, Vienna University of Technology

September, 2022

This project was partially supported by BNSF grant H-28/5, SU grant 80-10-33/22 and SEENET-TMP.
(1) Why Sasaki-Einstein backgrounds and holographic correspondence?
(2) Sasaki-Einstein backgrounds, Schödinger equation and separation of variables
(3) A little holography of point-like strings
(4) A side remark on Schwarz-Christoffel map and ...
(5) Other issues
(6) Summary

Why Sasaki-Einstein and holography

- The AdS/CFT: relates a SUGRA in the $A d S_{5} \times X_{5}$ to a strongly coupled, rank N, SCFT on the 4-d flat boundary $R^{3,1}$ of $A d S_{5}$.

Why Sasaki-Einstein and holography

- The AdS/CFT: relates a SUGRA in the $A d S_{5} \times X_{5}$ to a strongly coupled, rank N, SCFT on the 4-d flat boundary $R^{3,1}$ of $A d S_{5}$.
- In the general setting of minimal SUSY:
- the SUGRA vacuum is encoded by a Sasaki-Einstein metric g_{M} on a 5-d compact manifold M.
- gauge theory side: the $N=1$ superconformal symmetry is encoded by a complex cone Y of 6 real dim.

Why Sasaki-Einstein and holography

- The AdS/CFT: relates a SUGRA in the $A d S_{5} \times X_{5}$ to a strongly coupled, rank N, SCFT on the 4-d flat boundary $R^{3,1}$ of $A d S_{5}$.
- In the general setting of minimal SUSY:
- the SUGRA vacuum is encoded by a Sasaki-Einstein metric g_{M} on a 5-d compact manifold M.
- gauge theory side: the $N=1$ superconformal symmetry is encoded by a complex cone Y of 6 real dim.
- The low-energy dynamics of a general SCFT: controlled by the moduli space of classical vacua M.

Why Sasaki-Einstein and holography

- The AdS/CFT: relates a SUGRA in the $A d S_{5} \times X_{5}$ to a strongly coupled, rank N, SCFT on the 4-d flat boundary $R^{3,1}$ of $A d S_{5}$.
- In the general setting of minimal SUSY:
- the SUGRA vacuum is encoded by a Sasaki-Einstein metric g_{M} on a 5-d compact manifold M.
- gauge theory side: the $N=1$ superconformal symmetry is encoded by a complex cone Y of 6 real dim.
- The low-energy dynamics of a general SCFT: controlled by the moduli space of classical vacua M.
- The space M : defined as the critical points (modulo complex gauge equivalence) of the superpotential W.

Why Sasaki-Einstein and holography

- The AdS/CFT: relates a SUGRA in the $A d S_{5} \times X_{5}$ to a strongly coupled, rank N, SCFT on the 4-d flat boundary $R^{3,1}$ of $A d S_{5}$.
- In the general setting of minimal SUSY:
- the SUGRA vacuum is encoded by a Sasaki-Einstein metric g_{M} on a 5-d compact manifold M.
- gauge theory side: the $N=1$ superconformal symmetry is encoded by a complex cone Y of 6 real dim.
- The low-energy dynamics of a general SCFT: controlled by the moduli space of classical vacua M.
- The space M : defined as the critical points (modulo complex gauge equivalence) of the superpotential W.
- the BPS operators of the gauge theory: the local operators preserving half of the supercharges (holomorphic, polynomial functions on M forming chiral ring)

Why Sasaki-Einstein and holography

- The AdS/CFT: relates a SUGRA in the $A d S_{5} \times X_{5}$ to a strongly coupled, rank N, SCFT on the 4-d flat boundary $R^{3,1}$ of $A d S_{5}$.
- In the general setting of minimal SUSY:
- the SUGRA vacuum is encoded by a Sasaki-Einstein metric g_{M} on a 5-d compact manifold M.
- gauge theory side: the $N=1$ superconformal symmetry is encoded by a complex cone Y of 6 real dim.
- The low-energy dynamics of a general SCFT: controlled by the moduli space of classical vacua M.
- The space M : defined as the critical points (modulo complex gauge equivalence) of the superpotential W.
- the BPS operators of the gauge theory: the local operators preserving half of the supercharges (holomorphic, polynomial functions on M forming chiral ring)
- Holographic dual of Sasaki-Einstein: quiver theories

Why Sasaki-Einstein and holography

- The AdS/CFT: relates a SUGRA in the $A d S_{5} \times X_{5}$ to a strongly coupled, rank N, SCFT on the 4-d flat boundary $R^{3,1}$ of $A d S_{5}$.
- In the general setting of minimal SUSY:
- the SUGRA vacuum is encoded by a Sasaki-Einstein metric g_{M} on a 5-d compact manifold M.
- gauge theory side: the $N=1$ superconformal symmetry is encoded by a complex cone Y of 6 real dim.
- The low-energy dynamics of a general SCFT: controlled by the moduli space of classical vacua M.
- The space M : defined as the critical points (modulo complex gauge equivalence) of the superpotential W.
- the BPS operators of the gauge theory: the local operators preserving half of the supercharges (holomorphic, polynomial functions on M forming chiral ring)
- Holographic dual of Sasaki-Einstein: quiver theories
- Recently: metric g_{M} on M emerges from the canonical ensemble (of N "point particles")in the large N -limit \Longrightarrow emergent Sasaki-Einstein

Sasaki-Einstein $Y^{p, q}$

The metric tensor of $Y^{p, q}$ parameterized by two positive integers p, q $(p>q)$

$$
\begin{aligned}
d s^{2}= & \frac{1-y}{6}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)+\frac{1}{w(y) q(y)} d y^{2}+\frac{q(y)}{9}(d \psi-\cos \theta d \phi)^{2} \\
& +w(y)[d \alpha+f(y)(d \psi-\cos \theta d \phi)]^{2} \equiv d s^{2}(B)+w(y)(d \alpha+A)^{2} .
\end{aligned}
$$

The functions are

$$
\begin{align*}
w(y) & =\frac{2\left(b-y^{2}\right)}{1-y}, q(y)=\frac{b-3 y^{2}+2 y^{3}}{b-y^{2}}, f(y)=\frac{b-2 y+y^{2}}{6\left(b-y^{2}\right)} \\
b & =\frac{1}{2}-\frac{p^{2}-3 q^{2}}{4 p^{3}} \sqrt{4 p^{2}-3 q^{2}} \tag{1}
\end{align*}
$$

The coordinates $\{y, \theta, \phi, \psi, \alpha\}$ have the following ranges $(0<b<1)$:

$$
\begin{equation*}
y_{1} \leq y \leq y_{2}, 0 \leq \theta \leq \pi, 0 \leq \phi \leq 2 \pi, 0 \leq \psi \leq 2 \pi, 0 \leq \alpha \leq 2 \pi l \tag{2}
\end{equation*}
$$

Details of the $Y^{p, q}$ geometry

- Base manifold

Figure: Squashed sphere as circle fibration parametrized by ψ over the interval [y_{1}, y_{2}] and round sphere.
The topology of the base is $B \cong S^{2} \times S^{2}$

- S^{1} principle bundle over the base $\quad \rightarrow \quad d \alpha+A$
- Isometries are $S U(2) \times U(1) \times U(1)$.

Schrödinger equation $\square \Phi=-E \Phi$ with

$$
\begin{align*}
& \square=\frac{1}{1-y} \frac{\partial}{\partial y}(1-y) w(y) q(y) \frac{\partial}{\partial y} \\
& +\left(\frac{3}{2} \hat{Q}_{R}\right)^{2}+\frac{1}{w(y) q(y)}\left(\frac{\partial}{\partial \alpha}+3 y \hat{Q}_{R}\right)^{2}+\frac{6}{1-y}\left[\hat{K}-\left(\frac{\partial}{\partial \psi}\right)^{2}\right] \tag{3}
\end{align*}
$$

The R-symmetry operator is $\hat{Q}_{R}=2 \partial_{\psi}-1 / 3 \partial_{\alpha}$ and \hat{K} is the second Casimir of $S U(2)$ - a part of the isometry $S U(2) \times U(1)^{2}$,

$$
\begin{equation*}
\hat{K}=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta}\left(\frac{\partial}{\partial \phi}+\cos \theta \frac{\partial}{\partial \psi}\right)^{2}+\left(\frac{\partial}{\partial \psi}\right)^{2} \tag{4}
\end{equation*}
$$

Due to the isometry, the eigenfunction takes the form

$$
\begin{equation*}
\Phi(y, \theta, \phi, \psi, \alpha)=\exp \left[i\left(P_{\phi} \phi+P_{\psi} \psi+\frac{P_{\alpha}}{l} \alpha\right)\right] Y(y) \Theta(\theta) \tag{5}
\end{equation*}
$$

with $P_{\phi}, P_{\psi}, P_{\alpha} \in \mathbb{Z}, \hat{K}$ acting on $S U(2)$ part.

The regular solutions of the equation below are given by Jacobi polynomials.

$$
\begin{equation*}
\hat{K} \underbrace{e^{i\left(P_{\phi} \phi+P_{\psi} \psi\right)} \Theta(\theta)}_{S U(2) \text { part }}=-J(J+1) e^{i\left(P_{\phi} \phi+P_{\psi} \psi\right)} \Theta(\theta) \tag{6}
\end{equation*}
$$

The rest

$$
\begin{aligned}
& \frac{1}{1-y} \frac{d}{d y}\left[(1-y) w(y) q(y) \frac{d}{d y} Y(y)\right]-\left[\left(\frac{3}{2} Q_{R}\right)^{2}+\right. \\
& \left.\frac{1}{w(y) q(y)}\left(\frac{P_{\alpha}}{l}+3 y Q_{R}\right)^{2}+\frac{6}{1-y}\left(J(J+1)-P_{\psi}^{2}\right)-E\right] Y(y)=0 .
\end{aligned}
$$

converts into Fuchsian-type with four regular singularities at $y=y_{1}, y_{2}, y_{3}$ and ∞, i.e. Heun's equation;

$$
\begin{equation*}
\frac{d^{2}}{d y^{2}} Y(y)+\left(\sum_{i=1}^{3} \frac{1}{y-y_{i}}\right) \frac{d}{d y} Y(y)+o(y) Y(y)=0 \tag{7}
\end{equation*}
$$

The functions and parameters

$$
\begin{align*}
o(y) & =\frac{1}{P(y)}\left[\mu-\frac{y}{4} E-\sum_{i=1}^{3} \frac{\alpha_{i}^{2} P^{\prime}\left(y_{i}\right)}{y-y_{i}}\right], P(y)=\prod_{i=1}^{3}\left(y-y_{i}\right) \\
\mu & =\frac{E}{4}-\frac{3}{2} J(J+1)+\frac{3}{2}\left(\frac{2}{3} \frac{P_{\alpha}}{l}-Q_{R}\right)^{2} \tag{8}
\end{align*}
$$

where $l=\frac{q}{3 q^{2}-2 p^{2}+p \sqrt{4 p^{2}-3 q^{2}}}$ and

$$
\begin{align*}
\alpha_{1} & = \pm \frac{1}{4}\left[P_{\alpha}\left(p+q-\frac{1}{3 l}\right)-Q_{R}\right] \tag{9}\\
\alpha_{2} & = \pm \frac{1}{4}\left[P_{\alpha}\left(p-q+\frac{1}{3 l}\right)+Q_{R}\right] \tag{10}\\
\alpha_{3} & = \pm \frac{1}{4}\left[P_{\alpha}\left(\frac{-2 p^{2}+q^{2}+p \sqrt{4 p^{2}-3 q^{2}}}{q}-\frac{1}{3 l}\right)-Q_{R}\right] \tag{11}\\
y_{1,2} & =\frac{1}{4 p}\left(2 p \mp 3 q-\sqrt{4 p^{2}-3 q^{2}}\right), y_{3}=\frac{1}{2}+\frac{\sqrt{4 p^{2}-3 q^{2}}}{2 p} \tag{12}
\end{align*}
$$

It is convenient to transform the singularities from $\left\{y_{1}, y_{2}, y_{3}, \infty\right\}$ to $\left\{0,1, t=\frac{y_{1}-y_{3}}{y_{1}-y_{2}}, \infty\right\}$. This is achieved by the transformation

$$
\begin{equation*}
x=\frac{y-y_{1}}{y_{2}-y_{1}} \tag{13}
\end{equation*}
$$

together with the rescaling

$$
\begin{equation*}
Y=x^{\alpha_{1}}(1-x)^{\alpha_{2}}(t-x)^{\alpha_{3}} q(x) \tag{14}
\end{equation*}
$$

which transforms (7) to the standard form of Heun's equation

$$
\frac{d^{2}}{d x^{2}} q(x)+\left(\frac{\gamma}{x}+\frac{\delta}{x-1}+\frac{\epsilon}{x-t}\right) \frac{d}{d x} q(x)+\frac{\alpha \beta x-k}{x(x-1)(x-t)} q(x)=0
$$

Bunch of Heun's parameters

$$
\begin{align*}
& \alpha=-\lambda+\sum_{i=1}^{3}\left|\alpha_{i}\right|, \beta=2+\lambda+\sum_{i=1}^{3}\left|\alpha_{i}\right| \\
& \gamma=1+2 \alpha_{1}, \delta=1+2 \alpha_{2}, \epsilon=1+2 \alpha_{3} \tag{15}
\end{align*}
$$

The parameter k, the "accessory" parameter, is

$$
\begin{align*}
k= & \left(\left|\alpha_{1}\right|+\left|\alpha_{3}\right|\right)\left(\left|\alpha_{1}\right|+\left|\alpha_{3}\right|+1\right)-\left|\alpha_{2}\right|^{2} \\
& +t\left\{\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|\right)\left(\left|\alpha_{1}\right|+\left|\alpha_{2}\right|+1\right)-\left|\alpha_{3}\right|^{2}\right\}-\tilde{\mu} \tag{16}
\end{align*}
$$

with

$$
\begin{align*}
\tilde{\mu} & =-\frac{1}{y_{1}-y_{2}}\left(\mu-y_{1} \lambda(\lambda+2)\right) \\
& =\frac{p}{q}\left[\frac{2}{3}\left(1-y_{1}\right) \lambda(\lambda+2)-J(J+1)+\frac{1}{16}\left(\frac{2}{3} \frac{N_{\alpha}}{l}-Q_{R}\right)^{2}\right] \tag{17}\\
t & =\frac{1}{2}\left(1+\frac{\sqrt{4 p^{2}-3 q^{2}}}{q}\right) . \tag{18}
\end{align*}
$$

Note that the parameter t satisfies the inequality $t>1$ reflecting $p>q$.

A little holography of point-like string in $Y^{p, q}$

- Point-like strings $Y^{p, q}$

$$
\begin{equation*}
S=\frac{\sqrt{\lambda}}{2} \int d \tau\left(-\dot{t}^{2}+g_{a b} \dot{x}^{a} \dot{x}^{b}\right) \tag{19}
\end{equation*}
$$

The standard equations of motion are supplemented also with the Virasoro constraint

$$
\begin{equation*}
-\dot{t}^{2}+g_{a b} \dot{x}^{a} \dot{x}^{b}=0 \tag{20}
\end{equation*}
$$

For the metric at hand the action is reduces to

$$
\begin{array}{r}
S=\frac{\sqrt{\lambda}}{2} \int d \tau\left[\frac{1-y}{6}\left(\dot{\theta}^{2}+\sin ^{2} \theta \dot{\phi}^{2}\right)+\frac{1}{\omega(y) q(y)} \dot{y}^{2}+\frac{q(y)}{9}\left(\dot{\psi}^{2}-\cos \theta \dot{\phi}^{2}\right)\right. \\
\left.+w(y)[\dot{\alpha}+f(y)(\dot{\psi}-\cos \theta \dot{\phi})]^{2}\right] \tag{21}
\end{array}
$$

The Hamiltonian for the point-like string is

$$
\begin{equation*}
H=\frac{1}{2} g^{\mu \nu} P_{\mu} P_{\nu} \tag{22}
\end{equation*}
$$

The conjugate momenta to the coordinates $(\theta, \phi, y, \alpha, \psi)$ are:

$$
\begin{align*}
& \frac{1}{\sqrt{\lambda}} P_{\theta}=\frac{1-y}{6} \dot{\theta} \\
& \frac{1}{\sqrt{\lambda}} P_{y}=\frac{1}{6 p(y)} \dot{y}, \\
& \frac{1}{\sqrt{\lambda}} P_{\alpha}=w(y)(\dot{\alpha}+f(y)(\dot{\psi}-\cos \theta \dot{\phi})) \tag{23}\\
& \frac{1}{\sqrt{\lambda}} P_{\psi}=w(y) f(y) \dot{\alpha}+\left[\frac{q(y)}{9}+w(y) f^{2}(y)\right](\dot{\psi}-\cos \theta \dot{\phi}), \\
& \frac{1}{\sqrt{\lambda}} P_{\phi}=\frac{1-y}{6} \sin ^{2} \theta \dot{\phi}-\cos \theta P_{\psi} \\
& =\frac{1-y}{6} \sin ^{2} \theta \dot{\phi}-\cos \theta w(y) f(y) \dot{\alpha}-\cos \theta\left[\frac{q(y)}{9}+w(y) f^{2}(y)\right] \dot{\psi} \\
& +\cos ^{2} \theta\left[\frac{q(y)}{9}+w(y) f^{2}(y)\right] \dot{\phi},
\end{align*}
$$

where $p(y)=w(y) q(y) / 6=\left(b-3 y^{2}+2 y^{3}\right) /[3(1-y)]$ and dot means proper time derivative.

- The momentum P_{t} conjugate to t is the energy of the string \Longrightarrow equal to the conformal dimension Δ of the dual operator:

$$
\begin{equation*}
\Delta=P_{t} \equiv H=\sqrt{\lambda} \kappa \tag{24}
\end{equation*}
$$

- The R-charge:

$$
\begin{equation*}
Q_{R}=2 P_{\psi}-\frac{1}{3} P_{\alpha} \tag{25}
\end{equation*}
$$

- The energy/dispersion relations

$$
\begin{equation*}
\Delta^{2}=\left(\frac{3}{2} Q_{R}\right)^{2}+\frac{\left(P_{\alpha}+3 y Q_{R}\right)^{2}}{6 p(y)}+6 p(y) P_{y}^{2}+\frac{6\left(J^{2}-P_{\psi}^{2}\right)}{1-y} \tag{26}
\end{equation*}
$$

- Minimizing $H \Longrightarrow P_{y}=0 ; y_{0}=-\frac{P_{\alpha}}{3 Q_{R}} \Longrightarrow \Delta=\frac{3}{2} Q_{R} \Longrightarrow \mathrm{BPS}$
- The momentum P_{t} conjugate to t is the energy of the string \Longrightarrow equal to the conformal dimension Δ of the dual operator:

$$
\begin{equation*}
\Delta=P_{t} \equiv H=\sqrt{\lambda} \kappa \tag{24}
\end{equation*}
$$

- The R-charge:

$$
\begin{equation*}
Q_{R}=2 P_{\psi}-\frac{1}{3} P_{\alpha} \tag{25}
\end{equation*}
$$

- The energy/dispersion relations

$$
\begin{equation*}
\Delta^{2}=\left(\frac{3}{2} Q_{R}\right)^{2}+\frac{\left(P_{\alpha}+3 y Q_{R}\right)^{2}}{6 p(y)}+6 p(y) P_{y}^{2}+\frac{6\left(J^{2}-P_{\psi}^{2}\right)}{1-y} \tag{26}
\end{equation*}
$$

- Minimizing $H \Longrightarrow P_{y}=0 ; y_{0}=-\frac{P_{\alpha}}{3 Q_{R}} \Longrightarrow \Delta=\frac{3}{2} Q_{R} \Longrightarrow \mathrm{BPS}$ Summary:
a) The full set of point-like strings moving only in the transverse SE manifold is completely described by eq. (26);
b) for all BPS geodesics motion we obtain:

$$
P_{\alpha}=-3 y_{0} Q_{R}, \quad Q_{R}=\left(2 J-\frac{1}{3} P_{\alpha}\right) \Leftrightarrow \Delta=\frac{3}{2} Q_{R}, \quad Q_{R}=2 P_{\psi}-\frac{1}{3} P_{\alpha}
$$

Sasaki-Einstein $L^{p, q, r}$

- The metric

$$
\begin{aligned}
d s^{2} & =(d \tau+\sigma)^{2}+\frac{\rho^{2}}{4 \Delta_{x}} d x^{2}+\frac{\rho^{2}}{\Delta_{\theta}} d \theta^{2} \\
& +\frac{\Delta_{x}}{\rho^{2}}\left(\frac{\sin ^{2} \theta}{\alpha} d \phi+\frac{\cos ^{2} \theta}{\beta} d \psi\right)^{2}+\frac{\Delta_{\theta} \sin ^{2} \theta \cos ^{2} \theta}{\rho^{2}}\left(\frac{\alpha-x}{\alpha} d \phi-\frac{\beta-x}{\beta} d \psi\right)^{2}
\end{aligned}
$$

- Functions and parameters

$$
\begin{aligned}
& \text { Functions and parameters } \\
& \Delta_{\theta}=\alpha \cos ^{2} \theta+\beta \sin ^{2} \theta, \quad \sigma=\frac{(\alpha-x) \sin ^{2} \theta}{\alpha} d \phi+\frac{(\beta-x) \cos ^{2} \theta}{\beta} d \psi,
\end{aligned}
$$

$$
\begin{gathered}
\rho^{2}=\Delta_{\theta}-x, \quad \Delta_{x}=x(\alpha-x)(\beta-x)-\mu=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right), \\
\rho^{2}=\Delta_{\theta}-x, \quad \Delta_{\theta}=\alpha \cos ^{2} \theta+\beta \sin ^{2} \theta .
\end{gathered}
$$

- In general, for a cubic equation $p x^{3}+q x^{2}+r x+s=0$, the roots satisfy the relations

$$
x_{1}+x_{2}+x_{3}=-q / p, \quad x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=r / p, \quad x_{1} x_{2} x_{3}=-s / p
$$

- Change the variable θ by $y=\cos 2 \theta$

$$
\begin{aligned}
& \sigma=\frac{(\alpha-x)(1-y)}{2 \alpha} d \phi+\frac{(\beta-x)(1+y)}{2 \beta} d \psi, \Delta_{\theta}=\frac{\alpha(1+y)}{2}+\frac{\beta(1-y)}{2} \\
& \Delta_{y}:=\left(1-y^{2}\right)\left(\frac{\alpha(1+y)}{2}+\frac{\beta(1-y)}{2}\right)=\frac{\beta-\alpha}{2}\left(1-y^{2}\right)\left(\frac{\beta+\alpha}{\beta-\alpha}-y\right) .
\end{aligned}
$$

- The scalar Laplacian for the $L^{a, b, c}$ metric is given by

$$
\begin{align*}
\square_{(5)} & =\frac{4}{\rho^{2}} \frac{\partial}{\partial x}\left(\Delta_{x} \frac{\partial}{\partial x}\right)+\frac{4}{\rho^{2}} \frac{\partial}{\partial y}\left(\Delta_{y} \frac{\partial}{\partial y}\right)+\frac{\partial^{2}}{\partial \tau^{2}} \\
& +\frac{\alpha^{2} \beta^{2}}{\rho^{2} \Delta_{x}}\left(\frac{(\beta-x)}{\beta} \frac{\partial}{\partial \phi}+\frac{(\alpha-x)}{\alpha} \frac{\partial}{\partial \psi}-\frac{(\alpha-x)(\beta-x)}{\alpha \beta} \frac{\partial}{\partial \tau}\right)^{2} \tag{27}\\
& +\frac{\alpha^{2} \beta^{2}}{\rho^{2} \Delta_{y}}\left(\frac{(1+y)}{\beta} \frac{\partial}{\partial \phi}-\frac{(1-y)}{\alpha} \frac{\partial}{\partial \psi}-\frac{(\alpha-\beta)\left(1-y^{2}\right)}{2 \alpha \beta} \frac{\partial}{\partial \tau}\right)^{2} .
\end{align*}
$$

- The x-singuarities are at x_{1}, x_{2}, x_{3}; the y-singularities are located at $y_{1}=1, y_{2}=-1, y_{3}=\frac{\beta+\alpha}{\beta-\alpha}$.
- Isometries: $\ell_{i}=-\left(a_{i} \partial_{\phi}+b_{i} \partial_{\psi}+c_{i} \partial_{\tau}\right)$, where

$$
a_{i}=\frac{\alpha c_{i}}{x_{i}-\alpha}, \quad b_{i}=\frac{\beta c_{i}}{x_{i}-\beta}, \quad c_{i}=\frac{\left(\alpha-x_{i}\right)\left(\beta-x_{i}\right)}{2(\alpha+\beta) x_{i}-\alpha \beta-3 x_{i}^{2}} .
$$

- Ansatz $\Psi=e^{i c_{\tau} \tau+i c_{\phi} \phi+i c_{\psi} \psi} X(x) Y(y) \Longrightarrow$ separation of variables

The equation for separated x-system:

$$
\begin{array}{r}
\frac{d^{2}}{d x^{2}} X(x)+\frac{\Delta_{x}^{\prime}(x)}{\Delta_{x}(x)} \frac{d}{d x} X(x)+\frac{1}{4 \Delta_{x}(x)}[
\end{array} C-2\left(\alpha c_{\phi}+\beta c_{\psi}\right) c_{\tau}+(\alpha+\beta) c_{\tau}^{2} .
$$

The equation for separated y -system takes the form

$$
\begin{aligned}
& \qquad \begin{array}{l}
\frac{d^{2}}{d y^{2}} Y(y)+\frac{\tilde{\Delta}_{y}^{\prime}(y)}{\tilde{\Delta}_{y}(y)} \frac{d}{d y} Y(y)+\frac{1}{4 \tilde{\Delta}_{y}(y)}\left[-\frac{2 C}{\beta-\alpha}+\frac{4}{\beta-\alpha}\left(\alpha c_{\phi}+\beta c_{\psi}\right) c_{\tau}\right. \\
\\
\left.-\frac{2(\alpha+\beta)}{\beta-\alpha} c_{\tau}^{2}+\frac{\beta+\alpha}{\beta-\alpha} E-E y-\sum_{i} \frac{v_{i}^{2} \tilde{\Delta}_{y}^{\prime}\left(y_{i}\right)}{y-y_{i}}\right] Y(y)=0,
\end{array} \\
& \text { where } v_{1}=c_{\phi}, \quad v_{2}=c_{\psi}, \quad v_{3}=c_{\tau}-c_{\phi}-c_{\psi} \text {. } \\
& \text { We found two separated Heun equations, for } x \text { - and } y \text {-systems! }
\end{aligned}
$$

A little holography of point-like string in $L^{p, q, r}$

- The metric

$$
\begin{aligned}
d s^{2} & =(d \tilde{\tau}+\sigma)^{2}+\frac{\rho^{2}}{4 \Delta_{x}} d x^{2}+\frac{\rho^{2}}{\Delta_{\theta}} d \theta^{2} \\
& +\frac{\Delta_{x}}{\rho^{2}}\left(\frac{\sin ^{2} \theta}{\alpha} d \phi+\frac{\cos ^{2} \theta}{\beta} d \psi\right)^{2}+\frac{\Delta_{\theta} \sin ^{2} \theta \cos ^{2} \theta}{\rho^{2}}\left(\frac{\alpha-x}{\alpha} d \phi-\frac{\beta-x}{\beta} d \psi\right)^{2},
\end{aligned}
$$

- It is convenient to change the variable θ by $y=\cos 2 \theta$. Then
$\sigma=\frac{(\alpha-x)(1-y)}{2 \alpha} d \phi+\frac{(\beta-x)(1+y)}{2 \beta} d \psi, \quad \Delta_{\theta}=\frac{\alpha(1+y)}{2}+\frac{\beta(1-y)}{2}$
$\Delta_{y}:=\left(1-y^{2}\right)\left(\frac{\alpha(1+y)}{2}+\frac{\beta(1-y)}{2}\right)=\frac{\beta-\alpha}{2}\left(1-y^{2}\right)\left(\frac{\beta+\alpha}{\beta-\alpha}-y\right)$.

The point particle action becomes

$$
\begin{align*}
S=\frac{\sqrt{\lambda}}{2} \int d \tau\left[(\dot{\tilde{\tau}}+\dot{\sigma})^{2}+\frac{\rho^{2}}{4 \Delta_{x}} \dot{x}^{2}+\right. & \frac{\rho^{2}}{4 \Delta_{y}\left(1-y^{2}\right)} \dot{y}^{2} \\
& \left.+\frac{\Delta_{x}}{\rho^{2}} \dot{A}^{2}+\frac{\Delta_{y}\left(1-y^{2}\right)}{4 \rho^{2}} \dot{B}^{2}\right] \tag{28}
\end{align*}
$$

where

$$
\begin{align*}
\dot{\sigma} & =\frac{(\alpha-x)(1-y)}{2 \alpha} \dot{\phi}+\frac{(\beta-x)(1+y)}{2 \beta} \dot{\psi} \\
\dot{A} & =\frac{1-y}{2 \alpha} \dot{\phi}+\frac{1+y}{2 \beta} \dot{\psi}, \quad \dot{B}=\frac{\alpha-x}{\alpha} \dot{\phi}-\frac{\beta-x}{\beta} \dot{\psi} \tag{29}
\end{align*}
$$

From the action: τ, ϕ and ψ are cyclic coordinates and we can safely set their momenta to constants

$$
P_{\tilde{\tau}}=c_{\tilde{\tau}}, \quad P_{\phi}=c_{\phi}, \quad P_{\psi}=c_{\psi}
$$

- Momenta from the action

$$
\begin{aligned}
& \frac{1}{\sqrt{\lambda}} P_{\tilde{\tau}}=\dot{\tilde{\tau}}+\dot{\sigma} \quad \frac{1}{\sqrt{\lambda}} P_{x}=\frac{\rho^{2}}{4 \Delta_{x}} \dot{x}, \quad \frac{1}{\sqrt{\lambda}} P_{y}=\frac{\rho^{2}}{4 \Delta_{y}\left(1-y^{2}\right)} \dot{y} \\
& \frac{1}{\sqrt{\lambda}} P_{A}=\frac{\Delta_{x}}{\rho^{2}} \dot{A} \quad \frac{1}{\sqrt{\lambda}} P_{B}=\frac{\Delta_{y}\left(1-y^{2}\right)}{4 \rho^{2}} \dot{B} .
\end{aligned}
$$

The Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2 \sqrt{\lambda}}\left(P_{\tilde{\tau}}^{2}+\frac{4 \Delta_{x}}{\rho^{2}} P_{x}^{2}+\frac{4 \Delta_{y}\left(1-y^{2}\right)}{\rho^{2}} P_{y}^{2}+\frac{\rho^{2}}{\Delta_{x}} P_{A}^{2}+\frac{4 \rho^{2}}{\Delta_{y}\left(1-y^{2}\right)} P_{B}^{2}\right) \tag{30}
\end{equation*}
$$

Geodesic motion:

$$
P_{x}=P_{y}=0 \rightarrow x=x_{0}, y=y_{0}
$$

Thus, $P_{A}=P_{B}=0 \rightarrow \dot{\phi}=\dot{\psi}=0 \Rightarrow \dot{\sigma}=0: P_{\tilde{\tau}} \rightarrow P_{\tau} \equiv \dot{\tilde{\tau}} \Longrightarrow$.

$$
\frac{P_{\phi}}{P_{\tau}}=\frac{\left(\alpha-x_{0}\right)\left(1-y_{0}\right)}{\alpha}=\frac{2 P_{\phi}}{3 P_{R}}+1, \quad \frac{P_{\psi}}{P_{\tau}}=\frac{\left(\beta-x_{0}\right)\left(1+y_{0}\right)}{\beta}=\frac{2 P_{\psi}}{3 P_{R}}+1
$$

Schlesinger and Heun

Statement: Painlevé VI associated with Heun equation (15) describes the isomonodromic flow of the Fuchsian system for Heun

Schlesinger and Heun

Statement: Painlevé VI associated with Heun equation (15) describes the isomonodromic flow of the Fuchsian system for Heun

- Let us have a closer look at the Fuchsian equation

$$
\begin{equation*}
\frac{d \Psi}{d z}=\left[\frac{A_{0}}{z}+\frac{A_{1}}{z-1}+\frac{A_{2}}{z-t}\right] \Psi \tag{31}
\end{equation*}
$$

where, without loss of generality, the coefficient matrices $A_{\nu}, \nu=0,1,2$, are general, and the system is diagonal at $z=\infty$, i.e.,

$$
\operatorname{Tr} A_{\nu}=2 \theta_{\nu}, \quad \nu=0,1,2 ; \quad A_{\infty}=-A_{0}-A_{1}-A_{2}=\left(\begin{array}{cc}
\kappa_{1} & 0 \tag{32}\\
0 & \kappa_{2}
\end{array}\right)
$$

Let us denote the eigenvalues of A_{ν} by

$$
\pm \theta_{0} ; \pm \theta_{1}, \pm \theta_{2}, \quad 2 \theta_{0}, 2 \theta_{1}, 2 \theta_{2} \notin \mathbb{Z}
$$

In a compact form Schlesinger equations reads $\left(A_{i}=A_{i}\left(a_{1}, \ldots, a_{n}\right)\right)$

$$
\frac{\partial A_{i}}{\partial a_{j}}=\left(1-\delta_{i j}\right) \frac{\left[A_{i}, A_{j}\right]}{a_{i}-a_{j}}-\delta_{i j} \sum_{k \neq i} \frac{\left[A_{i}, A_{k}\right]}{a_{i}-a_{k}} ;
$$

- The second order ODE for the first component of $\Psi=\left(\psi_{1}, \psi_{2}\right)^{T}$:

$$
\begin{align*}
\partial_{z}^{2} \psi_{1}-(\operatorname{Tr} A(z)+ & \left.\partial_{z} \log A_{12}(z)\right) \partial_{z} \psi_{1} \\
& +\left(\operatorname{det} A(z)+A_{11}(z) \partial_{z} \log \frac{A_{12}(z)}{A_{11}(z)}\right) \psi_{1}=0 \tag{33}
\end{align*}
$$

- The second order ODE for the first component of $\Psi=\left(\psi_{1}, \psi_{2}\right)^{T}$:

$$
\partial_{z}^{2} \psi_{1}-\left(\operatorname{Tr} A(z)+\partial_{z} \log A_{12}(z)\right) \partial_{z} \psi_{1}
$$

$$
\begin{equation*}
+\left(\operatorname{det} A(z)+A_{11}(z) \partial_{z} \log \frac{A_{12}(z)}{A_{11}(z)}\right) \psi_{1}=0 \tag{33}
\end{equation*}
$$

The monodromy group \mathfrak{M}; the base point λ_{0}; the branch cuts $\left[\lambda_{0}, 0\right] ;\left[\lambda_{0}, 1\right] ;\left[\lambda_{0}, a\right] ;\left[\lambda_{0}, \infty\right]$ and the corresponding loops $\gamma_{0}, \gamma_{1}, \gamma_{a}, \gamma_{\infty}$. The complete monodromy data - in $M_{\nu}, \quad \nu=0,1, a, \infty$ realizing representation of $S L(2, \mathbb{Z})$ of the loops γ_{ν}. Conditions on monodromy matrices are:
$\operatorname{det} M_{\nu}=1, \quad \nu=0,1, a, \infty \quad M_{\infty} M_{t} M_{1} M_{0}=1, \quad$ (cyclic condition)

$$
M_{\infty}=\left(\begin{array}{cc}
e^{2 \pi i \delta} & 0 \tag{34}\\
0 & e^{-2 \pi i \delta}
\end{array}\right)
$$

- Monodromy data $\left(M_{t} \equiv M_{2}, M_{\infty} \equiv M_{3}\right)$ w/ inv. coordinates on it

$$
\begin{align*}
& a_{\nu}=\operatorname{Tr} M_{\nu}=2 \cos 2 \pi \alpha_{\nu}, \quad \nu=0,1,2,3 \\
& t_{\mu \nu}=\operatorname{Tr} M_{\mu} M_{\nu}=2 \cos \sigma_{\mu \nu}, \quad \mu, \nu=0,1,2 \tag{35}
\end{align*}
$$

- For Heun equation - take $\operatorname{tr} A_{i}=2 \theta_{i}$ and fix
$A_{\infty}=-\sum_{i=0,1, t} A_{i}=\left(\begin{array}{cc}\kappa_{1} & 0 \\ 0 & \kappa_{2}\end{array}\right)$
+ Fricke-Jimbo relation (leaves two independent $t_{i j}$):

$$
\begin{gathered}
W\left(t_{0 t}, t_{1 t}, t_{01}\right)=t_{0 t} t_{1 t} t_{01}+t_{0 t}^{2}+t_{1 t}^{2}+t_{01}^{2}-t_{0 t}\left(a_{1} a_{\infty}+a_{0} a_{t}\right)-t_{1 t}\left(a_{0} a_{\infty}+a_{1} a_{t}\right) \\
-t_{01}\left(a_{t} a_{\infty}+a_{0} a_{1}\right)+a_{0}^{2}+a_{1}^{2}+a_{t}^{2}+a_{\infty}^{2}+a_{0} a_{1} a_{t} a_{\infty}=4 .
\end{gathered}
$$

The relations $2 \theta_{\infty}=\kappa_{1}-\kappa_{2}-1$ and $\kappa_{1}+\kappa_{2}=-2\left(\theta_{0}+\theta_{1}+\theta_{t}\right)$ can be solved as

$$
\begin{array}{r}
\kappa_{1}=\theta_{\infty}+\frac{1}{2}-\sum_{i=0,1, t} \theta_{i}, \quad \kappa_{2}=-\theta_{\infty}-\frac{1}{2}-\sum_{i=0,1, t} \theta_{i} . \\
\mu:=\sum_{i=0,1, t} \frac{p_{i}+2 \theta_{i}}{\lambda-a_{i}} ; \quad A_{12}(z)=k \frac{z-\lambda}{z(z-1)(z-t)}, \quad k \in \mathbb{C}, \tag{37}
\end{array}
$$

Canonical form of deformed Heun equation

$$
\begin{align*}
& \quad \partial_{z}^{2} \psi_{1}+g_{1}(z) \partial_{z} \psi_{1}+g_{2}(z) \psi_{1}=0 \tag{38a}\\
& g_{1}(z)=\frac{1-2 \theta_{0}}{z}+\frac{1-2 \theta_{1}}{z-1}+\frac{1-2 \theta_{t}}{z-t}-\frac{1}{z-\lambda}, \tag{38b}\\
& g_{2}(z)=\frac{\kappa_{1}\left(\kappa_{2}+1\right)}{z(z-1)}-\frac{t(t-1) K}{z(z-1)(z-t)}+\frac{\lambda(\lambda-1) \mu}{z(z-1)(z-\lambda)}, \tag{38c}
\end{align*}
$$

with the accessory parameter $K=K(\theta ; x, \mu, t)$ given by

$$
\begin{align*}
& K(\theta ; \lambda, \mu, t)=\frac{\lambda(\lambda-1)(\lambda-t)}{t(t-1)} \\
& \quad \times\left[\mu^{2}-\left(\frac{2 \theta_{0}}{\lambda}+\frac{2 \theta_{1}}{\lambda-1}+\frac{2 \theta_{t}-1}{\lambda-t}\right) \mu+\frac{\kappa_{1}\left(\kappa_{2}+1\right)}{\lambda(\lambda-1)}\right] . \tag{39}
\end{align*}
$$

- Define

$$
\begin{equation*}
A(z, t)=\left[\frac{A_{0}}{z}+\frac{A_{1}}{z-1}+\frac{A_{t}}{z-t}\right] \Psi(z, x) ; \quad B(z, t)=-\frac{A_{t}}{z-t} \Psi(z, t) . \tag{40}
\end{equation*}
$$

Zero-curvature cond $\partial_{z} A-\partial_{t} B-[A, B]=0$ is satisfied if A_{i} satisfy Schlesinger eqs.
\rightarrow Write Schlesinger for deformed Heun and parmetrize A_{i} as

$$
A_{i}=\left(\begin{array}{cc}
p_{i}+2 \theta_{i} & p_{i} q_{i} \\
-\frac{\left(p_{i}+2 \theta_{i}\right)}{q_{i}} & -p_{i}
\end{array}\right), \quad A_{\infty}=-\sum_{i=0,1, t} A_{i}=\left(\begin{array}{cc}
\kappa_{1} & 0 \\
0 & \kappa_{2}
\end{array}\right),
$$

where p_{i} and q_{i} now are functions of (λ, t) and the fixed parameters.

- Compatibility condition for (40)

$$
\frac{d \lambda}{d t}=\{K, \lambda\}, \quad \frac{d \mu}{d t}=\{K, \mu\}, \quad\left(\{,\}=\partial_{\mu} \partial_{\lambda}-\partial_{\lambda} \partial \mu\right)
$$

- a change of the true singularity $t \Longrightarrow$ a change in the parameters.
- μ and λ are canonically conjugated coordinates in the phase space of isomonodromic deformations.

Explicitly

$$
\begin{align*}
& \dot{\lambda}=\frac{\lambda(\lambda-1)(\lambda-t)}{t(t-1)}\left[2 \mu-\left(\frac{2 \theta_{0}}{\lambda}+\frac{2 \theta_{1}}{\lambda-1}+\frac{2 \theta_{t}-1}{\lambda-t}\right)\right] \tag{41}\\
& \dot{\mu}=\left\{\left[-3 \lambda^{2} 2(1+t) \lambda-t\right] \mu^{2}+\right. {\left[2(2 \lambda-1-t) \theta_{0}+2(2 \lambda-t) \theta_{1}\right.} \\
&\left.\left.+(2 \lambda-1)\left(2 \theta_{t}-1\right)\right] \mu-\kappa_{1}\left(\kappa_{2}\right) .\right\} \tag{42}
\end{align*}
$$

Explicitly

$$
\begin{array}{r}
\dot{\lambda}=\frac{\lambda(\lambda-1)(\lambda-t)}{t(t-1)}\left[2 \mu-\left(\frac{2 \theta_{0}}{\lambda}+\frac{2 \theta_{1}}{\lambda-1}+\frac{2 \theta_{t}-1}{\lambda-t}\right)\right] \\
\dot{\mu}=\left\{\left[-3 \lambda^{2} 2(1+t) \lambda-t\right] \mu^{2}+\right. \\
{\left[2(2 \lambda-1-t) \theta_{0}+2(2 \lambda-t) \theta_{1}\right.} \tag{42}\\
\left.\left.+(2 \lambda-1)\left(2 \theta_{t}-1\right)\right] \mu-\kappa_{1}\left(\kappa_{2}\right) .\right\}
\end{array}
$$

Equivalently, for λ only this is Painleve VI

$$
\begin{align*}
\ddot{\lambda} & =\frac{1}{2}\left(\frac{1}{\lambda}+\frac{1}{\lambda-1}+\frac{1}{\lambda-t}\right) \dot{\lambda}^{2}-\left(\frac{1}{t}+\frac{1}{t-1} \frac{1}{\lambda-t}\right) \dot{\lambda} \\
& +\frac{\lambda(\lambda-1)(\lambda-t)}{t^{2}(t-1)^{2}}\left(\alpha-\gamma \frac{t}{\lambda^{2}}+\beta \frac{t-1}{(\lambda-1)^{2}}+\left(\frac{1}{2}-\delta\right) \frac{t(t-1)}{(\lambda-t)^{2}}\right) \tag{43}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{2}\left(2 \theta_{\infty}-1\right)^{2} \quad \gamma=2 \theta_{0}, \quad \beta=2 \theta_{1}^{2}, \quad \delta=2 \theta_{t}\left(\theta_{t}-1\right) \tag{44}
\end{equation*}
$$

- Painleve VI equation describes isomonodromy flow!

Reductions of Painleve VI

Degeneration of Painlevé equations [Chekhov, Mazzocco, Rubtsov, '15]

Figure: The table of confluences of Riemann surfaces from the Painlevé perspective.

- Degeneration of surfaces corresponding to reductions of Painleve equations (from [Chekhov, Mazzocco, Rubtsov 15'].)

PE w/ 4 singular points have reps in terms of Riemann surfaces. Geometric transition between different Painleve's - different types degeneration of the corresponding Riemann surfaces.

For instance, degeneration as in the first line of the figure gives

$$
\begin{aligned}
P_{V I} \rightarrow P_{V}: t & \rightarrow 1+\epsilon t_{1}, \quad \beta \rightarrow-\beta_{1}, \quad \gamma \rightarrow \delta_{1} \epsilon^{-2}+\gamma_{1} \epsilon^{-1} \\
\delta & \rightarrow-\delta_{1} \epsilon^{-2}, \quad(\epsilon \rightarrow 0)
\end{aligned}
$$

- Degeneration of surfaces corresponding to reductions of Painleve equations (from [Chekhov, Mazzocco, Rubtsov 15'].)

PE w/ 4 singular points have reps in terms of Riemann surfaces. Geometric transition between different Painleve's - different types degeneration of the corresponding Riemann surfaces.

For instance, degeneration as in the first line of the figure gives

$$
\begin{aligned}
P_{V I} \rightarrow P_{V}: t & \rightarrow 1+\epsilon t_{1}, \quad \beta \rightarrow-\beta_{1}, \quad \gamma \rightarrow \delta_{1} \epsilon^{-2}+\gamma_{1} \epsilon^{-1} \\
\delta & \rightarrow-\delta_{1} \epsilon^{-2}, \quad(\epsilon \rightarrow 0)
\end{aligned}
$$

- Functions corresponding to some surfaces

Figure: Gauss hypergeometric (3 regular punctures), Whittaker (1 regular + 1 of Poincaré rank 1) and Bessel (1 regular +1 of rank $1 / 2$) [Gavrilenko, Lisovyy 16'].

A side remark on Schwarz-Christoffel map and ...

Schwarz-Christoffel accessory parameters. We start with the formula of Christoffel-Schwarz mapping

$$
\begin{equation*}
\frac{d f(w)}{d w}=\gamma \prod_{i=1}^{n}\left(w-w_{i}\right)^{\theta_{i}-1} \tag{45}
\end{equation*}
$$

where w_{i} are called pre-vertices (on the line), and z_{i} - the pre-images of the vertices (vertices of the polygon, $z_{i}=f\left(w_{i}\right)$).

A side remark on Schwarz-Christoffel map and ...

Schwarz-Christoffel accessory parameters. We start with the formula of Christoffel-Schwarz mapping

$$
\begin{equation*}
\frac{d f(w)}{d w}=\gamma \prod_{i=1}^{n}\left(w-w_{i}\right)^{\theta_{i}-1} \tag{45}
\end{equation*}
$$

where w_{i} are called pre-vertices (on the line), and z_{i} - the pre-images of the vertices (vertices of the polygon, $z_{i}=f\left(w_{i}\right)$).
The Schwarzian differential equation

$$
\begin{equation*}
\{f(w), w\}:=\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}}{f^{\prime}}\right)^{2}=\sum_{i=1}^{n}\left[\frac{1-\theta_{i}^{2}}{2\left(w-w_{i}\right)^{2}}+\frac{2 \beta_{i}}{w-w_{i}}\right] \tag{46}
\end{equation*}
$$

where n is the number of vertices and $\pi \theta_{i}$ are the interior angles at each vertex z_{i}.

The solutions of the above equation is given by $z=f(w)$ which can be written as $f(w)=\tilde{y}_{1} / \tilde{y}_{2}$. Here \tilde{y}_{i} are the two independent solutions of

$$
\begin{equation*}
\tilde{y}^{\prime \prime}(w)+\sum_{i=1}^{n}\left[\frac{1-\theta_{i}^{2}}{4\left(w-w_{i}\right)^{2}}+\frac{\beta_{i}}{w-w_{i}}\right] \tilde{y}(w)=0 \tag{47}
\end{equation*}
$$

Requiring that the solutions behave well at $w=\infty$ imposes algebraic constraints on the accessory parameters

$$
\begin{equation*}
\sum_{i} \beta_{i}=\sum_{i}\left(w_{i} \beta_{i}+1-\theta_{i}^{2}\right)=\sum_{i}\left(2 w_{i} \beta_{i}^{2}+w_{i}\left(1-\theta_{i}^{2}\right)\right)=0 . \tag{48}
\end{equation*}
$$

By applying the transformation

$$
\begin{equation*}
\tilde{y}(w)=w^{-\theta_{0} / 2}(w-1)^{-\theta_{1} / 2}(w-t)^{-\theta_{t} / 2} y(w) \tag{49}
\end{equation*}
$$

we find the Heun equation in canonical form

$$
\begin{equation*}
y^{\prime \prime}(w)+\left(\frac{1-\theta_{0}}{w}+\frac{1-\theta_{t}}{w-t}+\frac{1-\theta_{1}}{w-1}\right) y^{\prime}(w)+\left(\frac{\kappa-\kappa_{+}}{w(w-1)}-\frac{t(t-1) K_{0}}{w(w-1)(w-t)}\right) y(w)=0 \tag{50}
\end{equation*}
$$

The constants and undefomed Hamiltonian K_{0} are

$$
\kappa_{ \pm}=1-\frac{1}{2}\left(\theta_{0}+\theta_{t}+\theta_{1} \pm \theta_{\infty}\right) \quad K_{0}=-\beta_{t}+\sum_{i \neq t} \frac{\left(1-\theta_{t}\right)\left(1-\theta_{i}\right)}{2\left(w_{i}-t\right)}
$$

Examples of Schwarz-Christoffel maps

- The straight line passing through z_{1} and z_{2}

$$
\begin{equation*}
\bar{z}=S(z)=\frac{\bar{z}_{1}-\bar{z}_{2}}{z_{1}-z_{2}} z+\frac{z_{1} \bar{z}_{2}-z_{2} \bar{z}_{1}}{z_{1}-z_{2}} \tag{51}
\end{equation*}
$$

- The circle of radius r, center at z_{0}

$$
\begin{equation*}
\bar{z}=S(z)=\frac{r^{2}}{z-z_{0}}+\bar{z}_{0} . \tag{52}
\end{equation*}
$$

- The ellipse $\left(z^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1, \quad(a>b)$

$$
\begin{equation*}
\bar{z}=S(z)=\frac{a^{2}+b^{2}}{a^{2}-b^{2}} z+\frac{2 a b}{a^{2}-b^{2}} \sqrt{z^{2}+b^{2}-a^{2}} . \tag{53}
\end{equation*}
$$

As a map from UHP to a polycircular-shaped domain

As a map from UHP to a polycircular-shaped domain

Schwarz-Christoffell graph

$$
\begin{aligned}
& \text { For } f(w)=y_{1}(w) / y_{2}(w) \\
& \qquad \bar{z}=S_{i}(z)=\frac{\bar{x}_{i} z+r_{i}^{2}-|x|^{2}}{z-x_{i}} .
\end{aligned}
$$

The centers of circle arcs $C_{i}: x_{i}$; radius: r_{i}; angles: $\pi \theta_{i}$.
In terms of the single monodromy parameters ($\left.M_{i}=S_{i+1} \bar{S}_{i}\right)$

$$
2 \cos \theta_{i}=\frac{x_{i} \bar{x}_{i+1}+r_{i}^{2}-\left|x_{i}\right|^{2}+\bar{x}_{i} x_{i+1}+r_{i+1}^{2}-\left|x_{i+1}\right|^{2}}{r_{i} r_{i+1}} .
$$

\Longrightarrow Schwarz-Christoffel graph is built out from the single monodromy parameters.

(Non)integrability issues

- For PVI non-integrability:

Theorem 1. Let $\theta_{\infty}=\theta_{1}+\theta_{2}+\theta_{t}$ and at least one $\theta_{j} \in \mathbb{Z}$ and at least one $\theta_{k} \notin \mathbb{Q}$. Then the sixth Painleve equation is not integrable. Theorem 2. Let $\theta_{\infty}=\theta_{1}+\theta_{2}+\theta_{t}$ and at least two θ_{j} are integers. Then the sixth Painleve equation is not integrable.

(Non)integrability issues

- For PVI non-integrability:

Theorem 1. Let $\theta_{\infty}=\theta_{1}+\theta_{2}+\theta_{t}$ and at least one $\theta_{j} \in \mathbb{Z}$ and at least one $\theta_{k} \notin \mathbb{Q}$. Then the sixth Painleve equation is not integrable. Theorem 2. Let $\theta_{\infty}=\theta_{1}+\theta_{2}+\theta_{t}$ and at least two θ_{j} are integers. Then the sixth Painleve equation is not integrable.

- For non-integrability of strings in $Y^{p, q}$ background:
- Basu \& Pando Zayas 11 considered $Y^{p, q}$ with the simplest ansatz

$$
\begin{equation*}
\theta=\theta(\tau), \quad \mu=\mu(\tau), \quad y=y(\tau), \quad \phi=\alpha_{1} \sigma, \quad \psi=\alpha_{2} \sigma . \tag{54}
\end{equation*}
$$

- $\dot{\theta}(\tau)=\theta(\tau)=0$ solves string EoM.
- for remaining y-eq

$$
\begin{equation*}
\ddot{y}-\frac{p^{\prime}}{p} \dot{y}^{2}+\frac{p p^{\prime}}{2}\left(\alpha_{2}+c \alpha_{1}\right)^{2}+\frac{2}{3} p\left(\alpha_{2}+c \alpha_{1}\right)\left(y\left(\alpha_{2}+c \alpha_{1}\right)-\alpha_{1}\right)=0 . \tag{55}
\end{equation*}
$$

- the Normal Variational Equation takes the form
$\ddot{\eta}-\frac{c \dot{y}_{s}}{1-c y_{s}} \dot{\eta}+\alpha_{1}\left(\alpha_{1}-\frac{c p\left(y_{s}\right)}{1-c y_{s}}\left(\alpha_{2}+c \alpha_{1}\right)-\frac{2}{3}\left(\left(\alpha_{2}+c \alpha_{1}\right) y_{s}-\alpha_{1}\right)\right) \eta=0$

(Non)integrability issues

- wrining Normal Variational Equation in appropriate form and applying systematically Kovacic' algorithm, it fails to yield a solution pointing that the system is generically non-integrable.
- consider the simpler geometry $T^{1,1}$

$$
\begin{align*}
d s^{2}=R^{2} & \left(-\cosh ^{2} \rho d t^{2}+d \rho^{2}+\sinh ^{2} \rho d \Omega_{3}^{2}\right. \\
& \left.+\frac{1}{6} \sum_{i=1}^{2}\left(d \theta_{i}^{2}+\sin ^{2} \theta_{i} d \phi_{i}^{2}\right)+\frac{1}{9}\left(d \psi+\sum_{i=1}^{2} \cos \theta_{i} d \phi_{i}\right)^{2}\right) . \tag{56}
\end{align*}
$$

with tha ansatz

$$
\phi_{1}=\alpha_{1} \sigma, \quad \phi_{2}=\alpha_{2} \sigma, \quad t=t(\tau), \quad \psi=\psi(\tau), \quad \theta_{i}=\theta_{i}(\tau)
$$

\Longrightarrow Kovacic' algorithm fails again for generic values of constants.

- For these solutions, we found that the condition for firts theorem for non-integrability of Painleve VI is satisfied!
- Conjecture: There exist correspondence between string non-integrability in strings in $Y^{p, q}$ background and PVI non-integrability.

Other issues

- Different SE backgrounds \rightarrow different Heun equation \rightarrow Painleve equations \rightarrow different singularity structures

Other issues

- Different SE backgrounds \rightarrow different Heun equation \rightarrow Painleve equations \rightarrow different singularity structures
- Conjecture: Confluent limits of Painleve VI encode the changes of background geometry.
Again: the confluent limit PVI \rightarrow PV

$$
\begin{aligned}
P_{V I} \rightarrow P_{V}: t & \rightarrow 1+\epsilon t_{1}, \quad \beta \rightarrow-\beta_{1}, \quad \gamma \rightarrow \delta_{1} \epsilon^{-2}+\gamma_{1} \epsilon^{-1} \\
\delta & \rightarrow-\delta_{1} \epsilon^{-2}, \quad(\epsilon \rightarrow 0)
\end{aligned}
$$

The corresponding (deformed) confluent Heun equation is

$$
\begin{aligned}
& y^{\prime \prime}(z)+\left[\frac{1-2 \tilde{\theta}_{0}}{z}+\frac{1-2 \tilde{\theta}_{t}}{z-t}-\frac{1}{z-\lambda}\right] y^{\prime}(z) \\
&+\left[-\frac{1}{4}+\frac{2 \tilde{\theta}_{\infty}-1}{2 z}-\frac{t c}{z(z-t)}+\frac{\lambda \mu}{z(z-\lambda)}\right] y(z)=0 .
\end{aligned}
$$

Thus

$$
t=\frac{1}{2}\left(1+\frac{\sqrt{4 p^{2}-3 q^{2}}}{q}\right) \longrightarrow 1 \quad \Longrightarrow \quad Y^{p, q} \longrightarrow T^{p, p}\left(T^{1,1}\right)
$$

Summary

Summary

- Painleve VI equation describes isomonodromy flow for parameters defining the background

Summary

- Painleve VI equation describes isomonodromy flow for parameters defining the background
- Schwarz-Christoffel map is constructed out of the single monodromy parameters.

Summary

- Painleve VI equation describes isomonodromy flow for parameters defining the background
- Schwarz-Christoffel map is constructed out of the single monodromy parameters.
- Conjecture: There exist a correspondence between non-integrability of strings in $Y^{p, q}$ and $L^{p, q, r}$ backgrounds and PVI/PV non-integrability.

Summary

- Painleve VI equation describes isomonodromy flow for parameters defining the background
- Schwarz-Christoffel map is constructed out of the single monodromy parameters.
- Conjecture: There exist a correspondence between non-integrability of strings in $Y^{p, q}$ and $L^{p, q, r}$ backgrounds and PVI/PV non-integrability.
- Conjecture: Confluent limits of Painleve VI encode the changes of background geometry.

Summary

- Painleve VI equation describes isomonodromy flow for parameters defining the background
- Schwarz-Christoffel map is constructed out of the single monodromy parameters.
- Conjecture: There exist a correspondence between non-integrability of strings in $Y^{p, q}$ and $L^{p, q, r}$ backgrounds and PVI/PV non-integrability.
- Conjecture: Confluent limits of Painleve VI encode the changes of background geometry.
Future directions:

Summary

- Painleve VI equation describes isomonodromy flow for parameters defining the background
- Schwarz-Christoffel map is constructed out of the single monodromy parameters.
- Conjecture: There exist a correspondence between non-integrability of strings in $Y^{p, q}$ and $L^{p, q, r}$ backgrounds and PVI/PV non-integrability.
- Conjecture: Confluent limits of Painleve VI encode the changes of background geometry.
Future directions:
- complete spectrum of Sasaki-Eistein backgrounds
- (black hole) backgrounds w/ monodromies associaed to other Painleve's
- Scattering and S-matrix
- Seiberg-Witten curves?
- ...

Summary

- Painleve VI equation describes isomonodromy flow for parameters defining the background
- Schwarz-Christoffel map is constructed out of the single monodromy parameters.
- Conjecture: There exist a correspondence between non-integrability of strings in $Y^{p, q}$ and $L^{p, q, r}$ backgrounds and PVI/PV non-integrability.
- Conjecture: Confluent limits of Painleve VI encode the changes of background geometry.
Future directions:
- complete spectrum of Sasaki-Eistein backgrounds
- (black hole) backgrounds w/ monodromies associaed to other Painleve's
- Scattering and S-matrix
- Seiberg-Witten curves?
- ...

