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Why Sasaki-Einstein and holography

• The AdS/CFT: relates a SUGRA in the AdS5 ×X5 to a strongly
coupled, rank N, SCFT on the 4-d flat boundary R3,1 of AdS5.

• In the general setting of minimal SUSY:
- the SUGRA vacuum is encoded by a Sasaki–Einstein metric gM on a 5-d
compact manifold M .
- gauge theory side: the N = 1 superconformal symmetry is encoded by a
complex cone Y of 6 real dim.
• The low-energy dynamics of a general SCFT: controlled by the moduli
space of classical vacua M .
- The space M : defined as the critical points (modulo complex gauge
equivalence) of the superpotential W .
- the BPS operators of the gauge theory: the local operators preserving
half of the supercharges (holomorphic, polynomial functions on M forming
chiral ring)
• Holographic dual of Sasaki-Einstein: quiver theories
• Recently: metric gM on M emerges from the canonical ensemble (of N
”point particles”)in the large N-limit =⇒ emergent Sasaki-Einstein
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Sasaki-Einstein Y p,q

The metric tensor of Y p,q parameterized by two positive integers p, q
(p > q)

ds2 = 1− y
6

(
dθ2 + sin2 θdφ2

)
+ 1
w(y)q(y)dy

2 + q(y)
9 (dψ − cos θdφ)2

+ w(y) [dα+ f(y)(dψ − cos θdφ)]2 ≡ ds2(B) + w(y)(dα+A)2.

The functions are

w(y) = 2(b− y2)
1− y , q(y) = b− 3y2 + 2y3

b− y2 , f(y) = b− 2y + y2

6(b− y2) ,

b = 1
2 −

p2 − 3q2

4p3

√
4p2 − 3q2 . (1)

The coordinates {y, θ, φ, ψ, α} have the following ranges (0 < b < 1):

y1 ≤ y ≤ y2 , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , 0 ≤ ψ ≤ 2π , 0 ≤ α ≤ 2πl . (2)



Details of the Y p,q geometry

• Base manifold

y1 y2

S1

r(y)

ψ

Figure: Squashed sphere as circle fibration parametrized by ψ over the interval
[y1, y2] and round sphere.

The topology of the base is B ∼= S2 × S2

• S1 principle bundle over the base → dα+A

• Isometries are SU(2)× U(1)× U(1).



Schrödinger equation �Φ = −E Φ with

� = 1
1− y

∂

∂y
(1− y)w(y)q(y) ∂

∂y

+
(3

2Q̂R
)2

+ 1
w(y)q(y)

(
∂

∂α
+ 3yQ̂R

)2
+ 6

1− y

[
K̂ −

(
∂

∂ψ

)2]
. (3)

The R-symmetry operator is Q̂R = 2∂ψ − 1/3∂α and K̂ is the second
Casimir of SU(2) - a part of the isometry SU(2)× U(1)2,

K̂ = 1
sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1

sin2 θ

(
∂

∂φ
+ cos θ ∂

∂ψ

)2
+
(
∂

∂ψ

)2
(4)

Due to the isometry, the eigenfunction takes the form

Φ(y, θ, φ, ψ, α) = exp
[
i

(
Pφφ+ Pψψ + Pα

l
α

)]
Y (y)Θ(θ) (5)

with Pφ, Pψ, Pα ∈ Z, K̂ acting on SU(2) part.



The regular solutions of the equation below are given by Jacobi
polynomials.

K̂ei(Pφφ+Pψψ)Θ(θ)︸ ︷︷ ︸
SU(2) part

= −J(J + 1) ei(Pφφ+Pψψ)Θ(θ) , (6)

The rest

1
1− y

d

dy

[
(1− y)w(y)q(y) d

dy
Y (y)

]
−
[(3

2QR
)2

+

1
w(y)q(y)

(
Pα
l

+ 3yQR
)2

+ 6
1− y

(
J(J + 1)− P 2

ψ

)
− E

]
Y (y) = 0 .

converts into Fuchsian-type with four regular singularities at y = y1, y2, y3
and ∞, i.e. Heun’s equation;

d2

dy2Y (y) +
( 3∑
i=1

1
y − yi

)
d

dy
Y (y) + o(y)Y (y) = 0 , (7)



The functions and parameters

o(y) = 1
P (y)

[
µ− y

4E −
3∑
i=1

α2
iP
′(yi)

y − yi

]
, P (y) =

3∏
i=1

(y − yi) ,

µ = E

4 −
3
2J(J + 1) + 3

2

(2
3
Pα
l
−QR

)2
(8)

where l = q

3q2−2p2+p
√

4p2−3q2
and

α1 = ±1
4

[
Pα

(
p+ q − 1

3l

)
−QR

]
, (9)

α2 = ±1
4

[
Pα

(
p− q + 1

3l

)
+QR

]
, (10)

α3 = ±1
4

[
Pα

(
−2p2 + q2 + p

√
4p2 − 3q2

q
− 1

3l

)
−QR

]
. (11)

y1,2 = 1
4p

(
2p∓ 3q −

√
4p2 − 3q2

)
, y3 = 1

2 +
√

4p2 − 3q2

2p . (12)



It is convenient to transform the singularities from {y1, y2, y3,∞} to
{0, 1, t = y1−y3

y1−y2
,∞}. This is achieved by the transformation

x = y − y1
y2 − y1

(13)

together with the rescaling

Y = xα1(1− x)α2(t− x)α3q(x) , (14)

which transforms (7) to the standard form of Heun’s equation

d2

dx2 q(x) +
(
γ

x
+ δ

x− 1 + ε

x− t

)
d

dx
q(x) + αβx− k

x(x− 1)(x− t)q(x) = 0



Bunch of Heun’s parameters

α = −λ+
3∑
i=1
|αi| , β = 2 + λ+

3∑
i=1
|αi| ,

γ = 1 + 2α1 , δ = 1 + 2α2 , ε = 1 + 2α3 , (15)

The parameter k, the “accessory” parameter, is

k = (|α1|+ |α3|)(|α1|+ |α3|+ 1)− |α2|2

+t
{

(|α1|+ |α2|)(|α1|+ |α2|+ 1)− |α3|2
}
− µ̃ (16)

with

µ̃ = − 1
y1 − y2

(µ− y1λ(λ+ 2))

= p

q

[
2
3(1− y1)λ(λ+ 2)− J(J + 1) + 1

16

(2
3
Nα

l
−QR

)2
]
,(17)

t = 1
2

(
1 +

√
4p2 − 3q2

q

)
. (18)

Note that the parameter t satisfies the inequality t > 1 reflecting p > q.



A little holography of point-like string in Y p,q

• Point-like strings Y p,q

S =
√
λ

2

∫
dτ
(
−ṫ2 + gabẋ

aẋb
)
. (19)

The standard equations of motion are supplemented also with the Virasoro
constraint

−ṫ2 + gabẋ
aẋb = 0. (20)

For the metric at hand the action is reduces to

S =
√
λ

2

∫
dτ
[1− y

6 (θ̇2 + sin2 θφ̇2) + 1
ω(y)q(y) ẏ

2 + q(y)
9 (ψ̇2− cos θφ̇2)

+ w(y) [α̇+ f(y)(ψ̇ − cos θφ̇)]2
]
. (21)

The Hamiltonian for the point-like string is

H = 1
2g

µνPµPν . (22)



The conjugate momenta to the coordinates (θ, φ, y, α, ψ) are:

1√
λ
Pθ = 1− y

6 θ̇ ,

1√
λ
Py = 1

6p(y) ẏ ,

1√
λ
Pα = w(y)

(
α̇+ f(y)

(
ψ̇ − cos θφ̇

))
,

1√
λ
Pψ = w(y)f(y)α̇+

[
q(y)

9 + w(y)f2(y)
] (
ψ̇ − cos θφ̇

)
,

1√
λ
Pφ = 1− y

6 sin2 θφ̇− cos θPψ

= 1− y
6 sin2 θφ̇− cos θw(y)f(y)α̇− cos θ

[
q(y)

9 + w(y)f2(y)
]
ψ̇

+ cos2 θ

[
q(y)

9 + w(y)f2(y)
]
φ̇ ,

(23)

where p(y) = w(y)q(y)/6 = (b− 3y2 + 2y3)/[3(1− y)] and dot means
proper time derivative.



• The momentum Pt conjugate to t is the energy of the string =⇒ equal
to the conformal dimension ∆ of the dual operator:

∆ = Pt ≡ H =
√
λκ (24)

• The R-charge:
QR = 2Pψ −

1
3Pα (25)

• The energy/dispersion relations

∆2 =
(

3
2QR

)2
+ (Pα + 3yQR)2

6p(y) + 6p(y)P 2
y +

6(J2 − P 2
ψ)

1− y (26)

• Minimizing H =⇒ Py = 0; y0 = − Pα
3QR =⇒ ∆ = 3

2QR =⇒ BPS

Summary:
a) The full set of point-like strings moving only in the transverse SE
manifold is completely described by eq. (26);
b) for all BPS geodesics motion we obtain:

Pα = −3y0QR, QR = (2J − 1
3Pα) ⇔ ∆ = 3

2QR, QR = 2Pψ −
1
3Pα
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Sasaki-Einstein Lp,q,r

• The metric

ds2 = (dτ + σ)2 + ρ2

4∆x
dx2 + ρ2

∆θ
dθ2

+ ∆x

ρ2

(
sin2 θ

α
dφ+ cos2 θ

β
dψ

)2

+ ∆θ sin2 θ cos2 θ

ρ2

(
α− x
α

dφ− β − x
β

dψ

)2
,

• Functions and parameters
∆θ = α cos2 θ + β sin2 θ, σ = (α− x) sin2 θ

α
dφ+ (β − x) cos2 θ

β
dψ,

ρ2 = ∆θ − x, ∆x = x(α− x)(β − x)− µ = (x− x1)(x− x2)(x− x3),
ρ2 = ∆θ − x, ∆θ = α cos2 θ + β sin2 θ.

- In general, for a cubic equation px3 + qx2 + rx+ s = 0, the roots satisfy
the relations

x1 + x2 + x3 = −q/p, x1x2 + x1x3 + x2x3 = r/p, x1x2x3 = −s/p



- Change the variable θ by y = cos 2θ =⇒

σ = (α− x)(1− y)
2α dφ+ (β − x)(1 + y)

2β dψ, ∆θ = α(1 + y)
2 + β(1− y)

2

∆y := (1− y2)
(
α(1 + y)

2 + β(1− y)
2

)
= β − α

2 (1− y2)
(
β + α

β − α
− y

)
.

• The scalar Laplacian for the La,b,c metric is given by

�(5) = 4
ρ2

∂

∂x

(
∆x

∂

∂x

)
+ 4
ρ2

∂

∂y

(
∆y

∂

∂y

)
+ ∂2

∂τ2

+ α2β2

ρ2∆x

(
(β − x)
β

∂

∂φ
+ (α− x)

α

∂

∂ψ
− (α− x)(β − x)

αβ

∂

∂τ

)2

+ α2β2

ρ2∆y

(
(1 + y)
β

∂

∂φ
− (1− y)

α

∂

∂ψ
− (α− β)(1− y2)

2αβ
∂

∂τ

)2

.

(27)

- The x−singuarities are at x1, x2, x3; the y−singularities are located at
y1 = 1, y2 = −1, y3 = β+α

β−α .
- Isometries: `i = −(ai∂φ + bi∂ψ + ci∂τ ), where

ai = αci
xi − α

, bi = βci
xi − β

, ci = (α− xi)(β − xi)
2(α+ β)xi − αβ − 3x2

i

.



- Ansatz Ψ = eicττ+icφφ+icψψX(x)Y (y) =⇒ separation of variables

The equation for separated x-system:

d2

dx2X(x) + ∆′x(x)
∆x(x)

d

dx
X(x) + 1

4∆x(x)

[
C−2(αcφ+βcψ)cτ + (α+β)c2

τ

− Ex−
∑
i

ω2
i∆′x(xi)
x− xi

]
X(x) = 0.

The equation for separated y-system takes the form

d2

dy2Y (y) +
∆̃′y(y)
∆̃y(y)

d

dy
Y (y) + 1

4∆̃y(y)

[
− 2C
β − α

+ 4
β − α

(αcφ + βcψ)cτ

− 2(α+ β)
β − α

c2
τ + β + α

β − α
E − Ey −

∑
i

v2
i ∆̃′y(yi)
y − yi

]
Y (y) = 0,

where v1 = cφ, v2 = cψ, v3 = cτ − cφ − cψ.
We found two separated Heun equations, for x- and y-systems!



A little holography of point-like string in Lp,q,r
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4∆x
dx2 + ρ2

∆θ
dθ2

+ ∆x

ρ2

(
sin2 θ

α
dφ+ cos2 θ

β
dψ

)2

+ ∆θ sin2 θ cos2 θ

ρ2

(
α− x
α

dφ− β − x
β

dψ

)2
,

- It is convenient to change the variable θ by y = cos 2θ. Then

σ = (α− x)(1− y)
2α dφ+ (β − x)(1 + y)

2β dψ, ∆θ = α(1 + y)
2 + β(1− y)

2

∆y := (1− y2)
(
α(1 + y)

2 + β(1− y)
2

)
= β − α

2 (1− y2)
(
β + α

β − α
− y

)
.



The point particle action becomes

S =
√
λ

2

∫
dτ

[
( ˙̃τ + σ̇)2 + ρ2

4∆x
ẋ2 + ρ2

4∆y(1− y2) ẏ
2

+∆x

ρ2 Ȧ
2 + ∆y(1− y2)

4ρ2 Ḃ2
]
, (28)

where

σ̇ = (α− x)(1− y)
2α φ̇+ (β − x)(1 + y)

2β ψ̇,

Ȧ = 1− y
2α φ̇+ 1 + y

2β ψ̇, Ḃ = α− x
α

φ̇− β − x
β

ψ̇.

(29)

From the action: τ, φ and ψ are cyclic coordinates and we can safely set
their momenta to constants

Pτ̃ = cτ̃ , Pφ = cφ, Pψ = cψ.



• Momenta from the action

1√
λ
Pτ̃ = ˙̃τ + σ̇

1√
λ
Px = ρ2

4∆x
ẋ,

1√
λ
Py = ρ2

4∆y(1− y2) ẏ

1√
λ
PA = ∆x

ρ2 Ȧ
1√
λ
PB = ∆y(1− y2)

4ρ2 Ḃ.

The Hamiltonian

H = 1
2
√
λ

(
P 2
τ̃ + 4∆x

ρ2 P 2
x + 4∆y(1− y2)

ρ2 P 2
y + ρ2

∆x
P 2
A + 4ρ2

∆y(1− y2)P
2
B

)
.

(30)
Geodesic motion:

Px = Py = 0 → x = x0, y = y0.

Thus, PA = PB = 0 → φ̇ = ψ̇ = 0⇒ σ̇ = 0 : Pτ̃ → Pτ ≡ ˙̃τ =⇒ .

Pφ
Pτ

= (α− x0)(1− y0)
α

= 2Pφ
3PR

+ 1, Pψ
Pτ

= (β − x0)(1 + y0)
β

= 2Pψ
3PR

+ 1



Schlesinger and Heun
Statement: Painlevé VI associated with Heun equation (15) describes the
isomonodromic flow of the Fuchsian system for Heun

• Let us have a closer look at the Fuchsian equation
dΨ
dz

=
[
A0
z

+ A1
z − 1 + A2

z − t

]
Ψ, (31)

where, without loss of generality, the coefficient matrices Aν , ν = 0, 1, 2,
are general, and the system is diagonal at z =∞, i.e.,

TrAν = 2θν , ν = 0, 1, 2; A∞ = −A0−A1−A2 =
(
κ1 0
0 κ2.

)
(32)

Let us denote the eigenvalues of Aν by

±θ0; ±θ1, ±θ2, 2θ0, 2θ1, 2θ2 /∈ Z.

In a compact form Schlesinger equations reads (Ai = Ai(a1, . . . , an))
∂Ai
∂aj

= (1− δij)
[Ai, Aj ]
ai − aj

− δij
∑
k 6=i

[Ai, Ak]
ai − ak

;
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• The second order ODE for the first component of Ψ = (ψ1 , ψ2)T :

∂2
zψ1 − (TrA(z) + ∂z logA12(z))∂zψ1

+
(

detA(z) +A11(z)∂z log A12(z)
A11(z)

)
ψ1 = 0. (33)

The monodromy group M; the
base point λ0; the branch cuts
[λ0, 0]; [λ0, 1]; [λ0, a]; [λ0,∞] and
the corresponding loops γ0, γ1, γa, γ∞.
The complete monodromy data - in
Mν , ν = 0, 1, a,∞ realizing repre-
sentation of SL(2,Z) of the loops γν .
Conditions on monodromy matrices are:

detMν = 1, ν = 0, 1, a,∞ M∞MtM1M0 = 1, (cyclic condition)

M∞ =
(
e2πiδ 0

0 e−2πiδ

)
(34)
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• Monodromy data (Mt ≡M2, M∞ ≡M3) w/ inv. coordinates on it

aν = TrMν = 2 cos 2παν , ν = 0, 1, 2, 3
tµν = TrMµMν = 2 cosσµν , µ, ν = 0, 1, 2.

(35)

• For Heun equation - take trAi = 2θi and fix

A∞ = −
∑
i=0,1,tAi =

(
κ1 0
0 κ2

)
+ Fricke-Jimbo relation (leaves two independent tij):

W (t0t, t1t, t01) = t0tt1tt01+t20t+t21t+t201−t0t(a1a∞+a0at)−t1t(a0a∞+a1at)
− t01(ata∞ + a0a1) + a2

0 + a2
1 + a2

t + a2
∞ + a0a1ata∞ = 4.

The relations 2θ∞ = κ1 − κ2 − 1 and κ1 + κ2 = −2(θ0 + θ1 + θt) can be
solved as

κ1 = θ∞ + 1
2 −

∑
i=0,1,t

θi, κ2 = −θ∞ −
1
2 −

∑
i=0,1,t

θi. (36)

µ :=
∑

i=0,1,t

pi + 2θi
λ− ai

; A12(z) = k
z − λ

z(z − 1)(z − t) , k ∈ C, (37)



Canonical form of deformed Heun equation

∂2
zψ1 + g1(z)∂zψ1 + g2(z)ψ1 = 0, (38a)

g1(z) = 1− 2θ0
z

+ 1− 2θ1
z − 1 + 1− 2θt

z − t
− 1
z − λ

, (38b)

g2(z) = κ1(κ2 + 1)
z(z − 1) −

t(t− 1)K
z(z − 1)(z − t) + λ(λ− 1)µ

z(z − 1)(z − λ) , (38c)

with the accessory parameter K = K(θ;x, µ, t) given by

K(θ;λ, µ, t) = λ(λ− 1)(λ− t)
t(t− 1)

×
[
µ2 −

(2θ0
λ

+ 2θ1
λ− 1 + 2θt − 1

λ− t

)
µ+ κ1(κ2 + 1)

λ(λ− 1)

]
. (39)



• Define

A(z, t) =
[
A0

z
+ A1

z − 1 + At
z − t

]
Ψ(z, x); B(z, t) = − At

z − t
Ψ(z, t). (40)

Zero-curvature cond ∂zA− ∂tB − [A,B] = 0 is satisfied if Ai satisfy
Schlesinger eqs.
→ Write Schlesinger for deformed Heun and parmetrize Ai as

Ai =
(

pi + 2θi piqi

− (pi+2θi)
qi

−pi

)
, A∞ = −

∑
i=0,1,t

Ai =
(
κ1 0
0 κ2

)
,

where pi and qi now are functions of (λ, t) and the fixed parameters.
• Compatibility condition for (40)

dλ

dt
= {K,λ}, dµ

dt
= {K,µ}, ({, } = ∂µ∂λ − ∂λ∂µ)

- a change of the true singularity t =⇒ a change in the parameters.
- µ and λ are canonically conjugated coordinates in the phase space of
isomonodromic deformations.



Explicitly

λ̇ = λ(λ− 1)(λ− t)
t(t− 1)

[
2µ−

(2θ0
λ

+ 2θ1
λ− 1 + 2θt − 1

λ− t

)]
(41)

µ̇ =
{[
−3λ22(1 + t)λ− t

]
µ2 + [2(2λ− 1− t)θ0 + 2(2λ− t)θ1

+(2λ− 1)(2θt − 1)]µ− κ1(κ2).} (42)

Equivalently, for λ only this is Painleve VI

λ̈ = 1
2

( 1
λ

+ 1
λ− 1 + 1

λ− t

)
λ̇2 −

(1
t

+ 1
t− 1

1
λ− t

)
λ̇

+ λ(λ− 1)(λ− t)
t2(t− 1)2

(
α− γ t

λ2 + β
t− 1

(λ− 1)2 + (1
2 − δ)

t(t− 1)
(λ− t)2

)
(43)

where

α = 1
2(2θ∞ − 1)2 γ = 2θ0, β = 2θ2

1, δ = 2θt(θt − 1) (44)

• Painleve VI equation describes isomonodromy flow!
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Reductions of Painleve VI

Degeneration of Painlevé equations [Chekhov, Mazzocco, Rubtsov, ’15]

PVI

PV

PIII′1

PIII1

PIII2

PIII3

PIV

PII′

PII

PI

Figure: The table of confluences of Riemann surfaces from the Painlevé
perspective.



• Degeneration of surfaces corresponding to reductions of Painleve
equations (from [Chekhov, Mazzocco, Rubtsov 15’].)

PE w/ 4 singular points have reps
in terms of Riemann surfaces. Ge-
ometric transition between differ-
ent Painleve’s - different types de-
generation of the corresponding
Riemann surfaces.

For instance, degeneration as in the first line of the figure gives
PV I → PV :t→ 1 + εt1, β → −β1, γ → δ1ε

−2 + γ1ε
−1

δ → −δ1ε
−2, (ε→ 0)

• Functions corresponding to some surfaces

Whittaker BesselGauss

Figure: Gauss hypergeometric (3 regular punctures), Whittaker (1 regular + 1 of
Poincaré rank 1) and Bessel (1 regular + 1 of rank 1/2) [Gavrilenko, Lisovyy 16’].
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A side remark on Schwarz-Christoffel map and ...

Schwarz-Christoffel accessory parameters. We start with the formula
of Christoffel-Schwarz mapping

df(w)
dw

= γ
n∏
i=1

(w − wi)θi−1, (45)

where wi are called pre-vertices (on the line), and zi - the pre-images of
the vertices (vertices of the polygon, zi = f(wi)).

The Schwarzian differential equation

{f(w), w} :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2
=

n∑
i=1

[
1− θ2

i

2(w − wi)2 + 2βi
w − wi

]
, (46)

where n is the number of vertices and πθi are the interior angles at each
vertex zi.
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The solutions of the above equation is given by z = f(w) which can be
written as f(w) = ỹ1/ỹ2 . Here ỹi are the two independent solutions of

ỹ′′(w) +
n∑
i=1

[
1− θ2

i

4(w − wi)2 + βi
w − wi

]
ỹ(w) = 0. (47)

Requiring that the solutions behave well at w =∞ imposes algebraic
constraints on the accessory parameters∑

i

βi =
∑
i

(wiβi + 1− θ2
i ) =

∑
i

(2wiβ2
i + wi(1− θ2

i )) = 0. (48)

By applying the transformation

ỹ(w) = w−θ0/2(w − 1)−θ1/2(w − t)−θt/2y(w), (49)

we find the Heun equation in canonical form

y
′′(w) +

(
1− θ0

w
+

1− θt
w − t

+
1− θ1

w − 1

)
y
′(w) +

(
κ−κ+

w(w − 1)
−

t(t− 1)K0

w(w − 1)(w − t)

)
y(w) = 0. (50)



The constants and undefomed Hamiltonian K0 are

κ± = 1− 1
2(θ0 + θt + θ1 ± θ∞) K0 = −βt +

∑
i 6=t

(1− θt)(1− θi)
2(wi − t)

.

Examples of Schwarz-Christoffel maps
The straight line passing through z1 and z2

z̄ = S(z) = z̄1 − z̄2
z1 − z2

z + z1z̄2 − z2z̄1
z1 − z2

. (51)

The circle of radius r, center at z0

z̄ = S(z) = r2

z − z0
+ z̄0. (52)

The ellipse (z2/a2) + (y2/b2) = 1, (a > b)

z̄ = S(z) = a2 + b2

a2 − b2 z + 2ab
a2 − b2

√
z2 + b2 − a2. (53)



As a map from UHP to a polycircular-shaped domain

πθ1 πθ2

πθ3 πθ4

x1 x2 x3 x4 z1 z2

z3 z4

z = f(x)

Schwarz-Christoffell graph

θ1
θ2

θ3θ4

z1
z2

z3z4

For f(w) = y1(w)/y2(w)

z̄ = Si(z) = x̄iz + r2
i − |x|2

z − xi
.

The centers of circle arcs Ci: xi;
radius: ri; angles: πθi.

In terms of the single monodromy parameters (Mi = Si+1S̄i)

2 cos θi =
xix̄i+1 + r2

i − |xi|2 + x̄ixi+1 + r2
i+1 − |xi+1|2

riri+1
.

=⇒ Schwarz-Christoffel graph is built out from the single monodromy
parameters.
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(Non)integrability issues

For PVI non-integrability:
Theorem 1. Let θ∞ = θ1 + θ2 + θt and at least one θj ∈ Z and at
least one θk /∈ Q . Then the sixth Painleve equation is not integrable.
Theorem 2. Let θ∞ = θ1 + θ2 + θt and at least two θj are integers.
Then the sixth Painleve equation is not integrable.

For non-integrability of strings in Y p,q background:
- Basu & Pando Zayas 11’ considered Y p,q with the simplest ansatz

θ = θ(τ), µ = µ(τ), y = y(τ), φ = α1σ, ψ = α2σ. (54)

- θ̇(τ) = θ(τ) = 0 solves string EoM.
- for remaining y-eq

ÿ − p′

p
ẏ2 + p p′

2 (α2 + c α1)2 + 2
3p(α2 + c α1)(y(α2 + c α1)− α1) = 0. (55)

- the Normal Variational Equation takes the form

η̈− c ẏs
1− cys

η̇+α1

(
α1 −

c p(ys)
1− c ys

(α2 + c α1)− 2
3((α2 + c α1)ys − α1)

)
η = 0.
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ÿ − p′

p
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(Non)integrability issues
- wrining Normal Variational Equation in appropriate form and applying
systematically Kovacic’ algorithm, it fails to yield a solution pointing that
the system is generically non-integrable.
- consider the simpler geometry T 1,1

ds2 = R2
(
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3

+ 1
6

2∑
i=1

(dθ2
i + sin2 θidφ

2
i ) + 1

9(dψ +
2∑
i=1

cos θidφi)2
)
. (56)

with tha ansatz

φ1 = α1σ, φ2 = α2σ, t = t(τ), ψ = ψ(τ), θi = θi(τ).

=⇒ Kovacic’ algorithm fails again for generic values of constants.
• For these solutions, we found that the condition for firts theorem for
non-integrability of Painleve VI is satisfied!
• Conjecture: There exist correspondence between string non-integrability
in strings in Y p,q background and PVI non-integrability.



Other issues
- Different SE backgrounds → different Heun equation → Painleve equations →
different singularity structures

• Conjecture: Confluent limits of Painleve VI encode the changes of background
geometry.
Again: the confluent limit PVI → PV

PV I → PV : t→ 1 + εt1, β → −β1, γ → δ1ε
−2 + γ1ε

−1

δ → −δ1ε
−2, (ε→ 0)

The corresponding (deformed) confluent Heun equation is

y′′(z) +
[

1− 2θ̃0

z
+ 1− 2θ̃t

z − t
− 1
z − λ

]
y′(z)

+
[
−1

4 + 2θ̃∞ − 1
2z − tc

z(z − t) + λµ

z(z − λ)

]
y(z) = 0.

Thus

t = 1
2

(
1 +

√
4p2 − 3q2

q

)
−→ 1 =⇒ Y p,q −→ T p,p (T 1,1)
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Summary

Painleve VI equation describes isomonodromy flow for parameters
defining the background
Schwarz-Christoffel map is constructed out of the single monodromy
parameters.
Conjecture: There exist a correspondence between non-integrability of
strings in Y p,q and Lp,q,r backgrounds and PVI/PV non-integrability.
Conjecture: Confluent limits of Painleve VI encode the changes of
background geometry.

Future directions:
- complete spectrum of Sasaki-Eistein backgrounds
- (black hole) backgrounds w/ monodromies associaed to other Painleve’s
- Scattering and S-matrix
- Seiberg-Witten curves?
- ...

THANK YOU!
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