Messages of the deformed spacetime via quasinormal modes

Nikola Konjik (University of Belgrade)
1-4 September 2022

Done in colaboration with:
Marija Dimitrijevic Ciric, Faculty of Physics, Belgrade Andjelo Samsarov, Institute Rudjer Boskovic, Zagreb

Content

(1) Introduction
(2) Noncommutative geometry
(3) Angular noncommutativity
(4) Scalar $U(1)$ gauge theory in RN background
(5) Continued fractions
(6) Dual picture
(7) Fermions
(8) Outlook

Introduction

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics

Introduction

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics
Possible solutions

- String Theory

Introduction

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics
Possible solutions

- String Theory - Quantum loop gravity

Introduction

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics
Possible solutions

- String Theory - Quantum loop gravity
- Noncommutative geometry

Introduction

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics
Possible solutions

- String Theory - Quantum loop gravity
- Noncommutative geometry - . .

Introduction

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics
Possible solutions

- String Theory - Quantum loop gravity
- Noncommutative geometry - ...

Detection of the gravitational waves can help better understanding of structure of space-time
Dominant stage of the perturbed BH are dumped oscillations of the geometry or matter fields (Quasinormal modes)

Noncommutative geometry

- Local coordinates x^{μ} are changed with hermitian operators x^{μ}

Noncommutative geometry

- Local coordinates x^{μ} are changed with hermitian operators \hat{x}^{μ}
- Algebra of operators is $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$

Noncommutative geometry

- Local coordinates x^{μ} are changed with hermitian operators \hat{x}^{μ}
- Algebra of operators is $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$
- For $\theta=$ const $\Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2}\left|\theta^{\mu \nu}\right|$

Noncommutative geometry

- Local coordinates x^{μ} are changed with hermitian operators \hat{x}^{μ}
- Algebra of operators is $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$
- For $\theta=$ const $\Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2}\left|\theta^{\mu \nu}\right|$
- The notion of a point loses its meaning \Rightarrow we describe NC space with algebra of functions (theorems of Gelfand and Naimark)

Noncommutative geometry

- Local coordinates x^{μ} are changed with hermitian operators \hat{x}^{μ}
- Algebra of operators is $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$
- For $\theta=$ const $\Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2}\left|\theta^{\mu \nu}\right|$
- The notion of a point loses its meaning \Rightarrow we describe NC space with algebra of functions (theorems of Gelfand and Naimark)

Approaches to NC geometry *-product, NC spectral triple, NC vierbein formalism, matrix models,...

NC space-time from the angular twist

Twist is used to deform a symmetry Hopf algebra Twist \mathcal{F} is invertible bidifferential operator from the universal enveloping algebra of the symmetry algebra

We work in 4D and deform the space-time by the following twist
$\mathcal{F}=\mathrm{e}^{-\frac{i}{2} \theta_{a b} X^{a} \otimes X^{b}}$
$\left[X^{a}, X^{b}\right]=0, \quad \mathrm{a}, \mathrm{b}=1,2 \quad X_{1}=\partial_{0}$ and $X_{2}=x \partial_{y}-y \partial_{x}$
$\mathcal{F}=\mathrm{e}^{\frac{-i a}{2}\left(\partial_{0} \otimes\left(x \partial_{y}-y \partial_{x}\right)-\left(x \partial_{y}-y \partial_{x}\right) \otimes \partial_{0}\right)}$

Bilinear maps are deformed by twist!
Bilinear map μ
$\mu: X \times Y \rightarrow Z$
$\mu_{\star}=\mu \mathcal{F}^{-1}$

Commutation relations between coordinates are:
$\left[\hat{x}^{0}, \hat{x}\right]=i a \hat{y}, \quad$ All other commutation relations are zero
$\left[\hat{x}^{0}, \hat{y}\right]=-i a \hat{x}$
Our approach: deform space-time by an Abelian twist to obtain commutation relations

Angular twist in curved coordinates $X_{1}=\partial_{0}$ and $X_{2}=\partial_{\varphi}$ -supose that metric tensor $g_{\mu \nu}$ does not depend on t and φ coordinates
-Hodge dual becomes same as in commutative case

Scalar $U(1)_{\star}$ gauge theory

If a one-form gauge field $\hat{A}=\hat{A}_{\mu} \star d x^{\mu}$ is introduced to the model through a minimal coupling, the relevant action becomes

$$
\begin{aligned}
S[\hat{\phi}, \hat{A}]= & \int(d \hat{\phi}-i \hat{A} \star \hat{\phi})^{+} \wedge_{\star} * H(d \hat{\phi}-i \hat{A} \star \hat{\phi}) \\
& -\int \frac{\mu^{2}}{4!} \hat{\phi}^{+} \star \hat{\phi} \epsilon_{a b c d} e^{a} \wedge_{\star} e^{b} \wedge_{\star} e^{c} \wedge_{\star} e^{d} \\
= & \int d^{4} \times \sqrt{-g} \star\left(g^{\mu \nu} \star D_{\mu} \hat{\phi}^{+} \star D_{\nu} \hat{\phi}-\mu^{2} \hat{\phi}^{+} \star \hat{\phi}\right)
\end{aligned}
$$

After expanding action and varying with respect to $\Phi^{+} \mathrm{EOM}$ is

$$
\begin{aligned}
& g^{\mu \nu}\left(D_{\mu} D_{\nu} \phi-\Gamma_{\mu \nu}^{\lambda} D_{\lambda} \phi\right)-\frac{1}{4} \theta^{\alpha \beta} g^{\mu \nu}\left(D_{\mu}\left(F_{\alpha \beta} D_{\nu} \phi\right)-\Gamma_{\mu \nu}^{\lambda} F_{\alpha \beta} D_{\lambda} \phi\right. \\
& \left.-2 D_{\mu}\left(F_{\alpha \nu} D_{\beta} \phi\right)+2 \Gamma_{\mu \nu}^{\lambda} F_{\alpha \lambda} D_{\beta} \phi-2 D_{\beta}\left(F_{\alpha \mu} D_{\nu} \phi\right)\right)=0
\end{aligned}
$$

Scalar field in the Reissner-Nordström background

RN metric tensor is

$$
g_{\mu \nu}=\left[\begin{array}{cccc}
f & 0 & 0 & 0 \\
0 & -\frac{1}{f} & 0 & 0 \\
0 & 0 & -r^{2} & 0 \\
0 & 0 & 0 & -r^{2} \sin ^{2} \theta
\end{array}\right]
$$

with $f=1-\frac{2 M G}{r}+\frac{Q^{2} G}{r^{2}}$ which gives two horizons (r_{+}and r_{-})
Q-charge of RN BH
M-mass of RN BH
Non-zero components of gauge fields are $A_{0}=-\frac{q Q}{r}$ i.e. $F_{r 0}=\frac{q Q}{r^{2}}$ q-charge of scalar field

EOM for scalar field in RN space-time

$$
\begin{aligned}
& \left(\frac{1}{f} \partial_{t}^{2}-\Delta+(1-f) \partial_{r}^{2}+\frac{2 M G}{r^{2}} \partial_{r}+2 i q Q \frac{1}{r f} \partial_{t}-\frac{q^{2} Q^{2}}{r^{2} f}\right) \phi \\
& +\frac{a q Q}{r^{3}}\left(\left(\frac{M G}{r}-\frac{G Q^{2}}{r^{2}}\right) \partial_{\varphi}+r f \partial_{r} \partial_{\varphi}\right) \phi=0
\end{aligned}
$$

where a is $\theta^{t \varphi}$
Assuming ansatz $\phi_{l m}(t, r, \theta, \varphi)=R_{l m}(r) e^{-i \omega t} Y_{l}^{m}(\theta, \varphi)$ we got equation for radial part

$$
\begin{align*}
& f R_{l m}^{\prime \prime}+\frac{2}{r}\left(1-\frac{M G}{r}\right) R_{l m}^{\prime}-\left(\frac{I(I+1)}{r^{2}}-\frac{1}{f}\left(\omega-\frac{q Q}{r}\right)^{2}\right) R_{l m} \\
& -i m a \frac{q Q}{r^{3}}\left(\left(\frac{M G}{r}-\frac{G Q^{2}}{r^{2}}\right) R_{l m}+r f R_{l m}^{\prime}\right)=0 \tag{1}
\end{align*}
$$

NC QNM solutions

QNM
 -special solution of equation
 -damped oscillations of a perturbed black hole

A set of the boudary condition which leads to this solution is the following: at the horizon, the QNMs are purely incoming, while in the infinity the QNMs are purely outgoing

Continued fraction method

To get form

$$
\frac{d^{2} \psi}{d y^{2}}+V \psi=0
$$

y must be
$y=r+\frac{r_{+}}{r_{+}-r_{-}}\left(r_{+}-\operatorname{iamq} Q\right) \ln \left(r-r_{+}\right)-\frac{r_{-}}{r_{+}-r_{-}}\left(r_{-}-\operatorname{iamq} Q\right) \ln \left(r-r_{-}\right)$
y is modified Tortoise RN coordinate Asymptotic form of the eq. (1)

$$
R(r) \rightarrow \begin{cases}Z^{\text {out }} e^{i \Omega y} y^{-1-i \frac{\omega q Q-\mu^{2} M}{\Omega}}-a m q Q \Omega & \text { za } y \rightarrow \infty \\ Z^{\text {in }} e^{-i\left(\omega-\frac{q Q}{r_{+}}\right)\left(1+i a m \frac{q Q}{r_{+}}\right) y} & \text { za } y \rightarrow-\infty\end{cases}
$$

Combining assymptotic forms, we get general solution in the form

$$
\begin{equation*}
R(r)=e^{i \Omega r}\left(r-r_{-}\right)^{\epsilon} \sum_{n=0}^{\infty} a_{n}\left(\frac{r-r_{+}}{r-r_{-}}\right)^{n+\delta} \tag{2}
\end{equation*}
$$

Combining assymptotic forms, we get general solution in the form

$$
\begin{align*}
& R(r)=e^{i \Omega r}\left(r-r_{-}\right)^{\epsilon} \sum_{n=0}^{\infty} a_{n}\left(\frac{r-r_{+}}{r-r_{-}}\right)^{n+\delta} \tag{2}\\
& \delta=-i \frac{r_{+}^{2}}{r_{+}-r_{-}}\left(\omega-\frac{q Q}{r_{+}}\right), \quad \epsilon=-1-i q Q \frac{\omega}{\Omega}+i \frac{r_{+}+r_{-}}{2 \Omega}\left(\Omega^{2}+\omega^{2}\right), \\
& \Omega=\sqrt{\omega^{2}-\mu^{2}}
\end{align*}
$$

Putting general form (2) to eq (1) we get 6-term recurrence relations for a_{n} :

$$
\begin{aligned}
A_{n} a_{n+1}+B_{n} a_{n}+C_{n} a_{n-1}+D_{n} a_{n-2}+E_{n} a_{n-3}+F_{n} a_{n-4} & =0, \\
A_{3} a_{4}+B_{3} a_{3}+C_{3} a_{2}+D_{3} a_{1}+E_{3} a_{0} & =0, \\
A_{2} a_{3}+B_{2} a_{2}+C_{2} a_{1}+D_{2} a_{0} & =0, \\
A_{1} a_{2}+B_{1} a_{1}+C_{1} a_{0} & =0, \\
A_{0} a_{1}+B_{0} a_{0} & =0,
\end{aligned}
$$

$$
\begin{aligned}
A_{n}= & r_{+}^{3} \alpha_{n}, \\
B_{n}= & r_{+}^{3} \beta_{n}-\operatorname{iamqQ(r_{+}-r_{-})r_{+}(n+\delta)-\frac {1}{2}\operatorname {iamqQ}(r_{+}+r_{-})r_{+}} \begin{aligned}
& +i a m q Q r_{+} r_{-}-3 r_{+}^{2} r_{-} \alpha_{n-1}, \\
C_{n}= & r_{+}^{3} \gamma_{n}+3 r_{+} r_{-}^{2} \alpha_{n-2}+i a m q Q\left(r_{+}-r_{-}\right)\left(2 r_{+}+r_{-}\right)(n+\delta-1) \\
& -i a m q Q\left(r_{+}-r_{-}\right) r_{+} \epsilon \quad+\frac{1}{2} i a m q Q\left(r_{+}+r_{-}\right)\left(2 r_{+}+r_{-}\right) \\
& -3 i a m q Q r_{+} r_{-}+a m q Q \Omega\left(r_{+}-r_{-}\right)^{2} r_{+}-3 r_{+}^{2} r_{-} \beta_{n-1}+, \\
D_{n}= & -r_{-}^{3} \alpha_{n-3}+3 r_{+} r_{-}^{2} \beta_{n-2}-3 r_{+}^{2} r_{-} \gamma_{n-1}+i a m q Q\left(r_{+}^{2}-r_{-}^{2}\right) \epsilon+3 i a m q Q r_{+} r_{-} \\
& -a m q Q \Omega\left(r_{+}-r_{-}\right)^{2} r_{-}-\operatorname{iamqQ(r_{+}-r_{-})(r_{+}+2r_{-})(n+\delta -2)} \\
& -\frac{1}{2} \operatorname{iamqQ(r_{+}+r_{-})(r_{+}+2r_{-}),} \\
E_{n}= & 3 r_{+} r_{-}^{2} \gamma_{n-2}-r_{-}^{3} \beta_{n-3}+i a m q Q\left(r_{+}-r_{-}\right) r_{-}(n+\delta-3) \\
& -i a m q Q\left(r_{+}-r_{-}\right) r_{-} \epsilon+\frac{1}{2} \operatorname{iamqQ(r_{+}+r_{-})r_{-}iamqQr_{+}r_{-},} \\
F_{n}= & -r_{-}^{3} \gamma_{n-3},
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\alpha_{n}= & (n+1)\left[n+1-2 i \frac{r_{+}}{r_{+}-r_{-}}\left(\omega r_{+}-q Q\right)\right], \\
\beta_{n}= & \epsilon+(n+\delta)(2 \epsilon-2 n-2 \delta)+2 i \Omega(n+\delta)\left(r_{+}-r_{-}\right)-I(I+1)-\mu^{2} r_{-}^{2} \\
& +\frac{2 \omega r_{-}^{2}}{r_{+}-r_{-}}\left(\omega r_{+}-q Q\right)-\frac{2 r_{-}^{2}}{\left(r_{+}-r_{-}\right)^{2}}\left(\omega r_{+}-q Q\right)^{2}+4 \omega r_{-}\left(\omega r_{+}-q Q\right) \\
& -\frac{2 r_{-}}{r_{+}-r_{-}}\left(\omega r_{+}-q Q\right)^{2}+\left(r_{+}-r_{-}\right)\left[i \Omega+2 \omega\left(\omega r_{+}-q Q\right)-\mu^{2}\left(r_{+}+r_{-}\right)\right], \\
\gamma_{n}= & \epsilon^{2}+(n+\delta-1)(n+\delta-1-2 \epsilon)+\left(\omega r_{-}-\frac{r_{-}}{r_{+}-r_{-}}\left(\omega r_{+}-q Q\right)\right)^{2}
\end{aligned}
$$

- 6 -term recurrence relation is possible to reduce to 3 -term with 3 successive Gauss elimination procedures
- 6-term recurrence relation is possible to reduce to 3 -term with 3 successive Gauss elimination procedures
- Gauss elimination procedure allows to reduce $n+1$-recurrence relation to n-recurrence relation
- 6 -term recurrence relation is possible to reduce to 3 -term with 3 successive Gauss elimination procedures
- Gauss elimination procedure allows to reduce $n+1$-recurrence relation to n-recurrence relation
- 3-term relation

$$
\begin{array}{r}
\alpha_{n} a_{n+1}+\beta_{n} a_{n}+\gamma_{n} a_{n-1}=0 \\
\alpha_{0} a_{1}+\beta_{0} a_{0}=0
\end{array}
$$

gives following equation

$$
0=\beta_{0}-\frac{\alpha_{0} \gamma_{1}}{\beta_{1}-\frac{\alpha_{1} \gamma_{2}}{\beta_{2}-\frac{\alpha_{2} \gamma_{3}}{\beta_{3}-\cdots \frac{\alpha_{n} \gamma_{n+1}}{\beta_{n+1}-\cdots}}}+}
$$

Duality picture

We have another way to get the equation of motion for scalar field 1 : Using the effective metric in commutative space

$$
g_{\mu \nu}=\left(\begin{array}{cccc}
f & 0 & 0 & 0 \tag{2}\\
0 & -\frac{1}{f} & 0 & -\frac{a q Q}{2} \sin ^{2} \theta \\
0 & 0 & -r^{2} & 0 \\
0 & -\frac{a q Q}{2} \sin ^{2} \theta & 0 & -r^{2} \sin ^{2} \theta
\end{array}\right)
$$

Fermions

To check the duality picture, we have done the same procedure for fermions in RN metric (coupled to external EM field).

- Noncommutative space with pure RN metric
- Commutative space with modified RN metric

The result is the same in both cases

$$
i \gamma^{\mu}\left(\partial_{\mu} \Psi-i \omega_{\mu} \Psi-i A_{\mu} \Psi\right)-m \Psi-\frac{i a}{2} \frac{q Q}{r^{2}} \sqrt{f} \gamma^{1} \partial_{\phi} \Psi=0
$$

Outlook

- We constructed Angular twist which induces angular noncommutativity
- Angular NC scalar and vector gauge theory is constructed
- EOM is solved with QNM boundary conditions for scalar field coupled to RN geometry
- But this is toy model!
- Plan for future is to calculate fermionic and gravitational QNMs and to compare it with results from LIGO, VIRGO, LISA...
- We want to understand physics of the effective metric

