
Open quantum systems and
(non)Markovianity

BWAM22

Momir Arsenijević
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Real quantum systems can not be described solely by
Schrodinger equation

ı~
d|Ψ(t)〉
dt

= Ĥ(t)|Ψ(t)〉 (1)

which is dynamical law for isolated systems, with standard
notation.
On the contrary, real quantum systems (S) are open [1]. This
means unavoidable interaction with environment (E). The
whole S+E makes isolated system governed by eq.(1).
Dynamics of (sub)system is now described with

dρ̂(t)

dt
= − ı

~
[ĤS , ρ̂(t)] +

∫ t

t◦

drK(t, r)ρ̂(r) (2)

where ĤS is the open-system’s self-Hamiltonian, while the
linear map K(t, r) is the ”memory kernel” describing the
effects of the environment on the system.
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Above description of dynamics is in a differential form for
both cases. As is known, dynamics can be written in integral
form. Namely, for isolated systems such is the whole S + E
dynamics is described by unitary operator Û(t, t◦) which is
equivalent to eq.(1). The open system’s dynamics is
determined by the time-dependent reduced density matrix
ρ̂S(t) = trE

(
Û(t, t◦)ρ̂SE(t◦)Û

†(t, t◦)
)

with the total S + E

system’s state ρ̂SE(t◦) and the initial time instant t◦.
Subsystem dynamics can then be written via dynamical
map ρ̂(t) = Φ(t, t◦)ρ̂(t◦) or in other words: map Φ(t, s) governs
a state transition, ρ̂(s)→ ρ̂(t).
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In quantum physics (and their applications) the maps with
the following features are of interest: linear, differentiable,
decomposable and positive maps. Beside this, invertibility
and time locality of maps are desirable.
Also, it is required stronger property than just positivity of the
map: complete positivity. In other words, map is valid
physical map if Φ(t, t◦)⊗ Id is positive, where Id stands for
identical map (operator) on the Hilbert space of arbitrary
dimension. This property of quantum dynamics comes from
physical reality of unavoidable existence of quantum
correlations of open system with environment. Clearly,
complete positivity implies positivity, but not the other way
around.
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As a topic of special interest and a vivid ongoing research
appear the so-called Markovian (as opposite to
non-Markovian) dynamical maps (dynamical processes).
Markovian processes are well known in classical physics.
Essentially, a Markov process is a stochastic process X(t) with
a short memory, that is a process which rapidly forgets its
past history. This property is what makes a Markov process so
easy to deal with, since it ensures that the whole hierarchy of
joint probabilities can be reconstructed from just two
distribution functions.
In quantum physics Markovian paradigm is of considerable
interest, but we should have in mind underlaying
non-commutative algebra as a distinction from classical
physics. As a consequence, it is notoriously hard to
formulate a proper quantum-mechanical counterpart of
the classical concept of Markovianity of dynamical maps.
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In general, quantum processes (dynamics) are
non-Markovian. From the practical point of view, presence
of some kind of memory in the open system’s dynamics may
be dangerous or even fatal for certain purposes and
applications, e.g. in the nascent field of quantum
technology, notably in quantum information processing and
quantum computation [2], and quantum metrology [3].
To proceed further, an definition is in order

Definition (Markovian quantum process)

We shall say that a quantum system subject to a time evolution
given by some family of trace-preserving linear maps
{Φ(t2,t1), t2 ≥ t1 ≥ t0} is Markovian (or divisible [4]) if, for every t2
and t1, Φ(t2,t1) is a complete positive map and fulfills the
composition law Φ(t3,t1) = Φ(t3,t2)Φ(t2,t1), t3 ≥ t2 ≥ t1.
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The above Definition is about quantum maps and their
Markovianity. If quantum map is differentiable and admits
master equation as a dynamical law, Markovianity can be
expressed and described by the following theorem [1,5]

Theorem (Gorini-Kossakowski-Sudarshan-Lindblad)

An operator Lt is the generator of a quantum Markov (or
divisible) process if and only if it can be written in the form

dρ(t)

dt
= Lt[ρ(t)] = −i[H(t), ρ(t)]

+
∑
k

γk(t)

[
Vk(t)ρ(t)V †k (t)− 1

2
{V †k (t)Vk(t), ρ(t)}

]
,

(3)

where H(t) and Vk(t) are time-dependent operators, with H(t)
self-adjoint, and γk(t) ≥ 0 for every k and time t.
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Is there any way to distinguish between Markovian and
non-Markovian maps? During the paste ten years a number
of witnesses have been constructed. For example, BLP
criterion is based on derivative of trace distance and then
optimization of the proper integral over the time of quantum
evolution. RHP criterion, on the other hand, is based on the
property of map divisibility, with request that intermediate
map be completely positive, which can be checked with
quite complicated algorithm. The two criteria are known not
to be mutually equivalent [6,7]: while RHP imply the BLP, the
reverse is, in general, not true.
There are other criteria of Markovianity and more or less they
are linked with some geometrical property of Hilbert space
or need for optimization, which makes them hard for
implementation. All this suggests that there is no canonical
criteria for non-Markovianity.
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Our starting point is a common point of agreement of some
important criteria of Markovianity. Assume that a dynamical
process admits a master equation (differential) form for the
open system’s reduced state ρ̂S(t). Then the mentioned
common point is the requirement that in order for the
process to be Markov, it must be local in time:

dρ̂S(t)

dt
= Ltρ̂S(t). (4)

Locality of Lt is a necessary condition for a process to be
regarded Markovian. In other words: a (time-)differentiable
dynamical process not admitting a master equation of the
general form of eq.(4) is necessarily non-Markovian.
But, can not be overemphasized: eq.(4) applies also to
some non-Markovian processes. That is, time-locality of a
master equation is necessary but not sufficient for
Markovianity of the process.

9 / 18



Natural assumptions: Basic physical laws are typically
expected to be linear, continuous and smooth in time thus
providing a differential mathematical form, i.e. a related
differential equation whose solutions sufficiently describe
dynamics and behavior of physical systems.
Introduction of so called C class of dynamical maps.

Definition (C class)
A linear and completely positive dynamical map Φ is in the so-called C
class of dynamical maps if and only if the following requirements are
simultaneously fulfilled: (a) the map is time continuous, in the sense it is
defined on a continuous time interval t′ ∈ [t◦, t], (b) the map is a
two-parameter map denoted Φ(t, t◦), t ≥ t◦, (c) the map is smooth
enough (ultraweak continuity), in the sense that, for positive ε,
limε↓0 Φ(t+ ε, t◦) = Φ(t, t◦), for t ≥ t◦, is well defined, (d) the map has the
whole Banach space of statistical operators (density matrices) in its
domain, and (e) the map is differentiable, i.e. that the (ultraweak) limit:

dΦ(t, t◦)

dt
= lim

ε↓0

Φ(t+ ε, t◦) − Φ(t, t◦)

ε
(5)

is well defined. 10 / 18



Every dynamical map that is not linear or non-completely
positive or not satisfying at least some of the above
conditions (a)-(e) of Definition does not belong to the C class
of dynamical maps.
The central result is the following Lemma

Lemma
1. For a dynamical map Φ(t, t◦) from the C class of dynamical
maps, the following characteristics of the map are mutually
equivalent: (i) the map is invertible, (ii) the map is divisible, and
(iii) the map admits a time-local master equation.

Proof.
We provide a proof of the lemma by establishing the chain of
implications:

(i)⇒ (ii)⇒ (iii)⇒ (i) (6)

11 / 18



Proof.
(i)⇒ (ii): Assuming existence of the inverse map, Φ−1(t, t◦), it easily
follows ρ̂(t) = Φ(t, t◦)ρ̂(t◦) = Φ(t, t◦)Φ

−1(s, t◦)ρ̂(s), t ≥ s ≥ t◦. This
expression presents a state transition, ρ̂(s)→ ρ̂(t), and introduces the
map Φ(t, s) for this transition. The requirement that everything regards
arbitrary initial state ρ̂(t◦) implies divisibility of the map:
Φ(t, s) = Φ(t, t◦)Φ

−1(s, t◦);
(ii)⇒ (iii): Assuming divisibility of the map, leads (ultraweak
continuity) to:

dρ̂(t)

dt
= lim
ε→0

Φ(t+ ε, t◦)− Φ(t, t◦)

ε
ρ̂(t◦) = lim

ε→0

Φ(t+ ε, t)− I
ε

ρ̂(t) := Ltρ̂(t)

(7)
which is a time-local master equation describing dynamics generated
by the time-local Liouvillian Lt := limε→0

Φ(t+ε,t)−I
ε ;

(iii)⇒ (i): The map Φ(t, t◦) can be presented due to the so-called
time-splitting formula in the form:

Φ(t, t◦) = lim
max |t′j+1−t′j |→0

Π0
j=n−1e

Lt′
j
(t′j+1−t

′
j)
, (8)
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Proof.
where t = t′n ≥ t′n−1 ≥ · · · ≥ t◦ and Lt is the Liouvillian. Then the inverse is
constructed:

Φ−1(t, t◦) = lim
max |t′j+1−t′j |→0

Πj=n−1
0 e

−Lt′
j
(t′j+1−t

′
j)
, (9)

as it can be easily seen by inspection.

Typically, invertibility is assumed to be non-essential for
Markovianity of the open-quantum-system dynamical maps.
Lemma establishes invertibility as a witness of Markovianity:
as distinguished above, non-invertibility, equivalently,
non-divisibility, implies time non-locality and therefore
non-Markovian character for the C-class dynamical maps.
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Some features should be highlighted: (A) the product in
equation (8) (as well as in equation (9)) assumes the
time-ordering thus providing the solution to equation (4) in
the standard exponential form, Φ(t, t◦) = T exp

(∫ t
t◦
L(s)ds

)
,

which is formally often used even for the continuous-variable
systems [1,8], (B) the proof of Lemma is exact, i.e. it may not
apply for certain approximation methods (e.g. perturbative
approximation of Liouvillian) or short-time behavior (while
bearing in mind that for sufficiently short time-intervals, all
dynamical maps are (approximately) invertible) [1,8]
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Figure: A schematic presentation of the dynamical maps with the internal circle
containing all the C-class dynamical maps sharply divided from the non-C-class
dynamical maps (that are out of the internal circle). The vertical solid line sharply divides
invertible (the left part) from non-invertible (time-nonlocal, i.e. indivisible, the right part)
C-class processes. The dashed horizontal line sharply divides Markovian (upper part) from
the non-Markovian–invertible C-class–processes. Position of the dashed line is not yet
uniquely determined–it depends on the adopted definition (criterion) of Markovianity.
The used abbreviations are as follows: ”Non-C class” stands for the non-C-class
processes; ”NI” stands for ”noninvertible” C-class processes; ”M” is for ”Markovian” while
”NM” is for ”non-Markovian” (invertible) C-class processes.

15 / 18



Fortunately, invertibility of a dynamical map is
straightforward operationally to test. Concretely, as distinct
from most of the existing Markovianity witnesses in the
literature, testing invertibility does not operationally require
any kind of optimization.
For the C-class processes, complete state tomography [2]
suffices for determination of non-Markovian character of the
process.
In conclusion C class introduced by Definition is inspired by
the fact that all basic physical laws are in the C class of
dynamical maps, notably Newton’s second law, the
Hamilton’s and Lagrange’s equations of classical
mechanics, the Maxwell equations of classical
electrodynamics as well as the time-dependent Schrödinger
equation. That is, the basic physical laws are expected to
be continuous in time as well as differentiable while free of
any singularities for every finite time instant t′ ∈ [t◦, t].
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This leads to invertibility as a criterion with simple operational
meaning and use for distinguishing Markovian and
non-Markovian dynamics.
Dropping any of conditions which defines C class of
dynamical processes leads, on the other hand, beyond that
class and can be questioned in light of natural assumptions
mentioned above.
This presentation is based on the work in progress under title:
”Invertibility as a witness of Markovianity of the quantum
dynamical maps” (J. Jeknić-Dugić, M. Arsenijević and M.
Dugić).
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Thanks for attention
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