Reactive collisions of electrons with molecular cations

Felix lacob

West University of Timisoara,

ROMANIA

SEENET-MTP BWAM22

Nicolina Pop - Politehnica University of Timişoara, Department of Physical Foundation of Engineering

J. Zsolt Mezei - Inst. of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary

loan F. Schneider - Laboratoire Ondes et Milieux Complexes CNRS Université du Havre, Université Normandie, Le Havre, France

Vincenzo Laporta - Italian National Research Council

K Chakrabarti - Department of Mathematics, Scottish Church College, Kolkata, India

Jonathan Tennyson - Department of Physics and Astronomy, UCL London

Research topics

• partial differential equation methods in quantum mechanics

HOME BROWSE INFO FOR AUTHORS COLLECTIONS

Home > Journal of Mathematical Physics > Volume 56, Issue 12 > 10.1063/1.4936309

b No Access • Submitted: 12 May 2015 • Accepted: 10 November 2015 • Published Online: 01 December 2015

Exact solution to the Schrödinger's equation with pseudo-Gaussian potential

J. Math. Phys. 56, 121501 (2015); https://doi.org/10.1063/1.4936309

^(b) Felix lacob^{1, a)} and Marina Lute^{2, b)}

Research topics

• differential geometric methods in physics

Physics Letters A Volume 384, Issue 35, 17 December 2020, 126888

On the geometric quantization of the ro-vibrational motion of homonuclear diatomic molecules

Felix Iacob⊠

West University of Timişoara, 300223 V. Pârvan 4, Timişoara,

Romania

Research topics

• collision theory of electrons on molecular cations

Study of bound and resonant states of NS molecule in the R-matrix approach

submitted

to

Journal of Physics B: Atomic, Molecular and Optical Physics

```
D<sub>2</sub><sup>+</sup>, BeD<sup>+</sup>, BeT<sup>+</sup>, H<sub>2</sub><sup>+</sup>, HD<sup>+</sup>, ArH<sup>+</sup>,
SH<sup>+</sup>
```

Outline

- 1) Scattering technique in electron-ion collision
- 2) Research method
- 3) Applications, NS⁺
- 4) MQDT mechanism on CH⁺ cation,

and how the cross-section undergoes changes by introducing different excited cores

Fundamental processes:

e- (I) + AB+(N _i ⁺ ,v _i ⁺) →	$AB^{+}(N_{f^{+}},v_{f^{+}}) + e^{-}(l')$	Ro-Vibrational (de)Excitation: VE(VdE)	
	A + B	Dissociative Recombination: DR	Rearrangement or Resonance
	$A + B^+ + e^-$	Dissociative Excitation: DE	scattering

Consider:

- partial wave of projectile, I
- internal structure of target, N_{pi} , v_i

Born-Oppenheimer

H₂⁺: **DR**

Total (direct & indirect) vs direct mechanisms

Super-excited molecular states

Electronic excitation emerges when:

- intense radiation arising from sources such as lasers, swift ions, or high-flux X-ray or electron pulses, interact with molecules.
- low electron collision with molecules, especially molecular cations

Research method

I. Ab-Initio calculation involving multireference electronic structure configurations Deliverables:

Feshbach resonances bound mono-excited Rydberg states autoionization widths quantum defects II. Multichannel Quantum Defect Theory

Deliverables:

cross-sections

thermal rate coefficients

Result applies to molecular dynamics

incorporating rate constants as kinetic constraints

Planetary

atmospheres

Cold laboratory plasmas

At the wall of the fusion devices (ITER) project

Hypersonic entry of spacecrafts

Plasma-assisted depollution

Electric-fieldassisted combustion

Broadband Emission (no bias) Plasma-assistedcombustion

e⁻ + NS⁺ scattering, R-matrix method

- In the inner region, exchange and other short range, possibly non-local, interactions are important
- In the **outer region** it is assumed that only long range potentials will affect the scattering

Asymptotic channel i is a state

- 1) of target with energy E_i^N
- 2) and of the scattering electron of energy E with partial wave , (I_i, m_i) .
- The wavenumber of the scattering electron associated with this channel $k_i^2 = 2(E E_i^N)$. A channel is said to be **open** if $k_i^2 \ge 0$

The wave function of the outer region solutions:

 $\mathbf{S} = \frac{(\mathbf{1} + \mathbf{i}\mathbf{K})}{(\mathbf{1} - \mathbf{i}\mathbf{K})}$

$$\sum_{i}^{e^{-1}} \sqrt{\frac{a}{10}} \sqrt{\frac{a}{g}} S^{+}}$$

$$S_{ij} \sim \frac{1}{\sqrt{k_i}} \left(\sin \theta_i \delta_{ij} + \cos \theta_i K_{ij} \right)$$

$$\delta(E) = \sum_{i} \operatorname{arctan}(K_{ii}^D).$$

NS⁺ target

e⁻ + NS⁺ scattering, R-matrix method

Feshbach resonances:

temporary trapping of an electron to form a quasibound or short-lived state of neutral in continuum of ion.

e⁻ + NS⁺ scattering, R-matrix method

Bound states

temporary trapping of an electron to form a quasibound or short-lived state of neutral,

are found by performing the scattering calculations at negative energy.

Diabatization: PEC of NS*,NS**

Diabatization: PEC of NS*

partial wave characterizing the incoming electron:

- blue s-state,
- red p-state,
- green d-state

Multichannel Quantum Defect Theory

The minimum set of **input data** for an MQDT:

- PEC of the ground state of the molecular ion,
- PEC of the dissociative states of the neutral,
- Widths, electronic couplings of the dissociative states with the ionization continuum of the ground state of ion,
- Quantum defects of the each Rydberg series converging to the ground state of the ion.

MQDT \rightarrow cross-sections,

thermal rate coefficients

CH⁺: molecular data

K Chakrabarti^{1,2}, J Zs Mezei^{1,3,4}, O Motapon⁵, A Faure⁶, O Dulieu⁷, K Hassouni³ and I F Schneider^{1,7}

1.) Vibronic interaction matrix

2.) Lippmann-Schwinger equation: K-matrix

3.) Diagonalization of the K-matrix

ION

5.) Cayley transform

6.) Scattering matrix: elimination of closed channels

7.) Cross section

ION

CH⁺: DR cross section

Test Storage Ring experiment

Thermal rates coefficients

Convoluted: experimental conditions

$$\alpha = \langle v\sigma \rangle = \int \int \sigma(v) v f(v_d, v) dv$$

$$f(\mathbf{v}_d, \mathbf{v}) = \frac{m}{2\pi k T_{e\perp}} exp(-\frac{m\mathbf{v}_{\perp}^2}{2k T_{e\perp}}) \sqrt{\frac{m}{2\pi k T_{e\parallel}}} exp(-\frac{m(\mathbf{v}_{\parallel} - \mathbf{v}_d)^2}{2k T_{e\parallel}})$$

 $T_{e\perp}$ 17 meV $T_{e\parallel}$ =1 meV

the difference at low energy is due to the lack of spin, and at higher energy is due to the lack of next dissociative curves

Thank you for your attention

acknowledge West University of Timisoara for support

