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Research topics

⚫ partial differential equation methods in quantum mechanics



Research topics

⚫ differential geometric methods in physics



Research topics

⚫ collision theory of electrons on molecular cations

Study of bound and resonant states of NS molecule in the R-matrix approach
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Outline

1) Scattering technique in electron-ion collision 

2) Research method

3) Applications, NS+

4) MQDT mechanism on CH+ cation,

and how the cross-section undergoes changes by introducing different excited cores



Scattering technique in electron-ion collision 

Fundamental processes:

e- (l) + AB+(Ni+,vi+)

→

AB+ (Nf+,vf+) + e- (l’) Ro-Vibrational
(de)Excitation: VE(VdE) 

A + B Dissociative
Recombination: DR

Rearrangement

or Resonance

scatteringA + B+ + e- Dissociative
Excitation: DE

Consider:

⚫ partial wave of projectile, l
⚫ internal structure of target, N

pi
, v

i



Scattering technique in electron-ion collision 

chemical 

reaction

scatte

r



Scattering technique in electron-ion collision 

Born-Oppenheimer 



Scattering technique in electron-ion collision 



Super-excited molecular states

Electronic excitation emerges when:

⚫ intense radiation arising from sources such as lasers, swift ions, or high-flux X-ray or

electron pulses, interact with molecules.

⚫ low electron collision with molecules, especially molecular cations

The scattered electron is viewed in the outermost

occupied molecular orbital, called virtual orbital



Research method

I. Ab-Initio calculation involving multireference electronic structure configurations

II. Multichannel Quantum Defect Theory

Feshbach resonances

bound mono-excited Rydberg states

quantum defects

cross-sections 

thermal rate coefficients

Deliverables:

Deliverables:



Result applies to molecular dynamics
incorporating 

rate constants 

as kinetic 

constraints



e- + NS+ scattering, R-matrix method
⚫ In the inner region, exchange and other short 

range, possibly non-local, interactions are 

important

⚫ In the outer region it is assumed that only 

long range potentials will affect the scattering

Asymptotic channel i is a state

1) of target with energy E
i
N

2) and of the scattering electron of energy E

with partial wave , (l
i
, m

i
) .

The wavenumber of the scattering electron

associated with this channel k
i
2 = 2(E – E

i
N).

A channel is said to be open if k
i
2 ≥ 0

The wave function of the outer region solutions:



NS+ target
Multi-Configuration, Self-Consistent-Field approach

Complete Active Space - CASSCF

C2v point group  

code symmetry 

Ordering:

A
1   

B
1 

B
2  

A
2

FRO(4,1,1,0)

CAS(4,2,2,0)

------------------

OCC(8,3,3,0)

VIR(2,1,1,1)

------------------

TOT(10,4,4,1)



e- + NS+ scattering, R-matrix method
Feshbach resonances:

temporary trapping of an electron to form a quasibound or short-lived state of

neutral in continuum of ion.

•

•

energy of ion is 

zero reference

NS**



e- + NS+ scattering, R-matrix method
Bound states

temporary trapping of an electron to form a quasibound or short-lived state of

neutral,

are found by performing the scattering calculations at negative energy.

NS*



Diabatization: PEC of NS*,NS**



Diabatization: PEC of NS*
partial wave characterizing 

the incoming electron:

⚫ blue s-state, 

⚫ red p-state, 

⚫ green d-state



Multichannel Quantum Defect Theory

The minimum set of input data for an MQDT: 

⚫ PEC of the ground state of the molecular ion,  

⚫ PEC of the dissociative states of the neutral, 

⚫ Widths, electronic couplings of the dissociative states with the ionization continuum of the 

ground state of ion,

⚫ Quantum defects of the each Rydberg series converging to the ground state of the ion.

MQDT → cross-sections,

thermal rate coefficients 



CH+: molecular data
MQDT 

mechanism



CH+: molecular data

ION

Valence DISSOCIATIVE states

Rydberg
states 

Valence-
Rydberg
couplings 

Valence IONIZATION states



Rydberg
states 

CH+: molecular data

1.) Vibronic interaction matrix

ION

Valence DISSOCIATIVE states

Valence-
Rydberg
couplings 

Valence IONIZATION states



Rydberg
states 

CH+: molecular data

2.) Lippmann-Schwinger equation: K-matrix

ION

Valence-
Rydberg
couplings 



Rydberg
states 

CH+: molecular data

3.) Diagonalization of the K-matrix

ION

Valence-
Rydberg
couplings 



Rydberg
states 

CH+: molecular data

4.) Frame transformation

ION

Valence-
Rydberg
couplings 

Quantum defect

eigenvalues 

of K matrix



Rydberg
states 

CH+: molecular data

5.) Cayley transform

ION

Valence-
Rydberg
couplings 

“o” :  open channels 

“c” :  closed channels



Rydberg
states 

CH+: molecular data

6.) Scattering matrix: elimination of closed channels

ION

Valence-
Rydberg
couplings 



Rydberg
states 

CH+: molecular data

7.) Cross section

ION

Valence-
Rydberg
couplings 



2017/07/11-Lisboa-ICPIG2017

CH+: DR cross section 

TSR

Test Storage Ring experiment

no rotation 

considered



2017/07/11-Lisboa-ICPIG2017

CH+: DR cross section 

direct: c1

TSR

no rotation 

considered



CH+: DR cross section 

TSR

direct: c1

indirect: c1



2017/07/11-Lisboa-ICPIG2017

CH+: DR cross section 

TSR

direct: c1,c2

indirect: c1,c2



CH+: DR cross section 

TSR

direct and indirect: c1,c2,c3



Convoluted: experimental conditions

=17 meV =1 meV

Thermal rates coefficients



2017/07/11-Lisboa-ICPIG2017

CH+: DR cross section  

TSR



2017/07/11-Lisboa-ICPIG2017

CH+: DR cross section 

TSR

ion core: c1



2017/07/11-Lisboa-ICPIG2017

CH+: DR cross section 

TSR

ion cores: c1,c2



CH+: DR cross section

TSR

ion cores: c1,c2,c3



2017/07/11-Lisboa-ICPIG2017

CH+: DR cross section

TSR

ion cores: c1,c2,c3

Range up to 0.5 eV

the difference at low energy is due to the lack of spin, and at 

higher energy is due to the lack of next dissociative curves
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