Dynamical approximations in multifield cosmological models

Calin Lazaroiu NIPNE, Romania

Calin Lazaroiu Dynamical approximations 1/17

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ � � �

Cosmological models

2 Dynamical approximants of the cosmological flow

Basic observables

Some natural dynamical approximations

< □ > < □ > < □ > < Ξ > < Ξ > . Ξ . のへで

An n-dimensional scalar triple is an ordered system $(\mathcal{M}, \mathcal{G}, \Phi)$, where:

- (*M*, *G*) is a connected, borderless and complete Riemannian *n*-manifold (called scalar manifold)
- $\Phi \in \mathcal{C}^{\infty}(\mathcal{M}, \mathbb{R}_{>0})$ is a smooth strictly positive function (called scalar potential).

A cosmological model is a system $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$ where $(\mathcal{M}, \mathcal{G}, \Phi)$ is a scalar triple and the parameter $M_0 > 0$ is called *rescaled Planck mass*.

Definition

The rescaled Hubble function $\mathcal{H} : T\mathcal{M} \to \mathbb{R}_{>0}$ of a cosmological model $(\mathcal{M}_0, \mathcal{M}, \mathcal{G}, \Phi)$ is defined through:

$$\mathcal{H}(u) \stackrel{\mathrm{def.}}{=} \frac{1}{M_0} \sqrt{||u||^2 + 2\Phi(\pi(u))} \quad \forall u \in T\mathcal{M}$$

where $\pi : T\mathcal{M} \to \mathcal{M}$ is the bundle projection. The cosmological equation of $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$ is the autonomous geometric second order ODE:

 $abla_t \dot{\varphi}(t) + \mathcal{H}(\dot{\varphi}(t))\dot{\varphi}(t) + (\operatorname{grad}_{\mathcal{G}} \Phi)(\varphi(t)) = 0$.

00

The cosmological semispray of $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$ is the defining smooth second order vector field $S \in \mathcal{X}(T\mathcal{M})$. The pair $(T\mathcal{M}, S)$ is called the cosmological dynamical system of $(\mathcal{M}, \mathcal{G}, \Phi)$ at rescaled Planck mass M_0 . The flow $\Pi \in \mathcal{C}^{\infty}(\mathcal{D}, T\mathcal{M})$ (with $\mathcal{D} \subset \mathbb{R} \times T\mathcal{M}$) of this dynamical system is called the cosmological flow of $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$.

Definition

The solutions $\varphi: I \to \mathcal{M}$ of the cosmological equation of $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$ (where *I* is a non-degenerate interval) are called cosmological curves, while their canonical lifts $\gamma \stackrel{\text{def.}}{=} \dot{\varphi}: I \to T\mathcal{M}$ are called cosmological *flow* curves. The latter are the integral curves of *S*.

Definition (Critical and non-critical sets)

$$\operatorname{Crit} \Phi \stackrel{\operatorname{def.}}{=} \{ m \in \mathcal{M} \mid (\mathrm{d} \Phi)(m) = 0 \} \hspace{0.2cm}, \hspace{0.2cm} \mathcal{M}_0 \stackrel{\operatorname{def.}}{=} \mathcal{M} \setminus \operatorname{Crit} \Phi$$

Definition

For any curve
$$\varphi: I \to \mathcal{M}$$
, define $I_{\operatorname{reg}} \stackrel{\text{def.}}{=} \{t \in I \mid \dot{\varphi}(t) \neq 0\}$.

Each scalar triple defines a cosmological model on \mathbb{R}^4 :

$$\mathcal{S}_{\mathcal{M},\mathcal{G},\Phi}[g,arphi] = \int_{\mathbb{R}^4} \mathrm{d}^4 x \, \sqrt{|g|} \left[rac{M^2}{2} R(g) - rac{1}{2} \mathrm{Tr}_g arphi^*(\mathcal{G}) - \Phi \circ arphi
ight] ~~.$$

Define the *rescaled Planck mass* through $M_0 \stackrel{\text{def.}}{=} \sqrt{\frac{2}{3}}M$, where *M* is the reduced Planck mass. Take *g* to describe a spatially flat FLRW universe:

$$\mathrm{d} s_g^2 := -\mathrm{d} t^2 + a^2(t) \mathrm{d} \vec{x}^2 \ (x^0 = t \ , \ \vec{x} = (x^1, x^2, x^3) \ , \ a(t) > 0 \ \forall t)$$

and φ to depend only on the cosmological time $\varphi = \varphi(t)$. Define the *Hubble* parameter through $H(t) \stackrel{\text{def.}}{=} \frac{\dot{a}(t)}{a(t)}$. When H > 0, the equations of motion are equivalent with the cosmological equation of $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$ together with the condition:

$$H(t)=rac{1}{3}\mathcal{H}(\dot{arphi}(t))$$
 ,

which determines a up to an integration constant along each cosmological curve.

・ロト ・ ヨ ・ ・ ヨ ト ・ ヨ ・ うらつ

A regular dynamical approximant of the cosmological semispray S of $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$ is a smooth second order vector field $S_0 \in \mathcal{X}(T\mathcal{M})$ which depends only on $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$. The gometric second order ODE defined on \mathcal{M} by S_0 is called a *regular approximant* of the cosmological equation of $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$.

A second order dynamical approximation defines an flow $\Pi_0: \mathcal{D}_0 \subset \mathbb{R} \times \mathcal{TM} \to \mathcal{M} \text{ which can be viewed as an approximant of } \Pi \text{ on the}$ open set $\mathcal{D} \cap \mathcal{D}_0 \subset \mathbb{R} \times \mathcal{TM}$ in any of the the C^k weak Whitney (a.k.a. compact-open) topologies of $\mathcal{C}^{\infty}(\mathcal{D} \cap \mathcal{D}_0, \mathcal{M})$.

Remark

One can also consider *denenerate approximants* of S, which are defined by pairs (\mathcal{N}, S_0) , where \mathcal{N} is a section of $T\mathcal{M}$ and S_0 is a smooth vector field defined on \mathcal{M} . The latter describe first order geometric ODEs on \mathcal{M} . In this case, the π -pullback of S_0 to \mathcal{N} approximates the restriction of S to \mathcal{N} .

A natural class of dynamical approximants can be constructed using *basic* scalar cosmological observables, which are functions $f : U \to \mathbb{R}$ with U an open subset of $T\mathcal{M}$.

Sac

Fundamental basic observables

Definition

The logarithmic and characteristic forms of the model $(M_0, \mathcal{M}, \mathcal{G}, \Phi)$ are the smooth exact 1-form $\Xi, \Psi \in \Omega^1(\mathcal{M})$ defined through:

$$\Xi \stackrel{\text{def.}}{=} \frac{M_0}{2} \mathrm{d} \log \Phi \quad , \quad \Psi \stackrel{\text{def.}}{=} -\mathrm{d} \left(\frac{M_0}{\sqrt{2\Phi}} \right) = \frac{\Xi}{\sqrt{2\Phi}}$$

Let $F = \pi^*(T\mathcal{M}) \to T\mathcal{M}$ be the Finsler bundle of \mathcal{M} .

Definition

The first IR function and rescaled first slow roll function $\kappa, \hat{\epsilon} : T\mathcal{M} \to \mathbb{R}_{\geq 0}$ are:

$$\kappa(u) \stackrel{ ext{def.}}{=} rac{||u||^2}{2\Phi(\pi(u))} \ , \ \ \hat{arepsilon}(u) \stackrel{ ext{def.}}{=} rac{\kappa(u)}{1+\kappa(u)} \ \ orall u \in \mathcal{TM}$$

The relative gradient field and rescaled acceleration field $q, \hat{\eta} \in \Gamma(\dot{T}M, F)$ are:

$$q(u) \stackrel{\mathrm{def.}}{=} rac{(\mathrm{grad} \Phi)^{\vee}(u)}{\mathcal{H}(u) ||u||} \ , \ \ \hat{\eta}(u) \stackrel{\mathrm{def.}}{=} \nu(u) + q(u)$$

where $n(u) \stackrel{\text{def.}}{=} \frac{(\text{grad}\Phi)(\pi(u))}{||(\mathrm{d}\Phi)(\pi(u))||}$ and $\nu(u) \stackrel{\text{def.}}{=} \frac{u}{||u||}$ for $u \in \dot{T}\mathcal{M}$.

Fundamental basic observables

We extend ||q|| to $T\mathcal{M}_0$ by setting $||q(u)|| = +\infty$ when ||u|| = 0.

Definition

The conservative function $c : T\mathcal{M}_0 \to \mathbb{R}_{\geq 0}$ of $(\mathcal{M}, \mathcal{G}, \Phi)$ is:

$$c(u) \stackrel{\mathrm{def.}}{=} rac{1}{||q(u)||} \ orall u \in \mathcal{TM}_0$$
 .

Proposition

Suppose that $||\Xi||$ is known. Then κ and c are related on $T\mathcal{M}_0$ through:

$$c(u) = \frac{\left[\kappa(u)(1+\kappa(u))\right]^{1/2}}{||\Xi(\pi(u))||} \quad , \quad \kappa(u) = \frac{1}{2} \left[-1 + \sqrt{1+4c(u)^2}||\Xi(\pi(u))||^2\right]$$

Definition

The rescaled second slow roll function and characteristic angle function $\hat{\eta}^{\parallel}$: $\dot{T}\mathcal{M} \to \mathbb{R}$, Θ : $\dot{T}\mathcal{M}_0 \to [0, \pi]$ are:

$$\hat{\eta}^{\parallel}(u) = \mathcal{G}(\hat{\eta}(u), \nu(u)) =_{\dot{\mathcal{T}}\mathcal{M}_0} 1 + rac{\cos\Theta(u)}{c(u)} \ , \ \ \cos\Theta(u) \stackrel{ ext{def.}}{=} \mathcal{G}_{\pi(u)}(\nu(u), \textit{n}(u))$$

Figure: Admissible domain of c and $\hat{\eta}^{\parallel}$. The right and left boundaries of the domain are the hyperbolas $c(\hat{\eta}^{\parallel} - 1) = -1$ and $c(\hat{\eta}^{\parallel} - 1) = +1$, which correspond respectively to $\Theta = 0$ and $\Theta = \pi$. The vertical red line in the middle has equation $\hat{\eta}^{\parallel} = 1$ and corresponds to $\Theta = \pi/2$. The interval within which $\hat{\eta}^{\parallel}$ can vary for a fixed value of c is obtained by intersecting the corresponding horizontal line with the domain shown in the figure. The strongly dissipative regime $c \gg 1$ forces $\hat{\eta}^{\parallel}$ to be close to one and hence the ultra slow roll approximation is accurate in this regime.

・ 同 ト ・ ヨ ト ・ ヨ ト

The rescaled first slow roll parameter, rescaled acceleration and rescaled second slow roll parameter of a curve $\varphi: I \to \mathcal{M}$ are the maps $\hat{\varepsilon}_{\varphi}: I \to \mathbb{R}$, $\hat{\eta}_{\varphi}: I_{\text{reg}} \to T\mathcal{M}$ and $\hat{\eta}_{\varphi}^{\parallel}: I_{\text{reg}} \to \mathbb{R}$ defined through:

$$egin{aligned} &\hat{arepsilon}_{arphi}(t) \stackrel{ ext{def.}}{=} -rac{\dot{\mathcal{H}}_{arphi}(t)}{\mathcal{\mathcal{H}}_{arphi}(t)^2} = -rac{1}{\mathcal{\mathcal{H}}_{arphi}(t)}rac{ ext{d}}{ ext{d}t}\log\mathcal{\mathcal{H}}_{arphi}(t) ~~. \ &\hat{\eta}_{arphi}(t) \stackrel{ ext{def.}}{=} -rac{1}{\mathcal{\mathcal{H}}_{arphi}(t)}rac{
abla_t\dot{arphi}(t)}{||\dot{arphi}(t)||} ~~, ~~ \hat{\eta}_{arphi}^{\parallel}(t) \stackrel{ ext{def.}}{=} \mathcal{G}(\hat{\eta}_{arphi}(t),\mathcal{T}_{arphi}(t)) \end{aligned}$$

where $\mathcal{T}_{arphi}(t)$ is the unit tangent vector to arphi at $t\in \mathit{I}_{\mathrm{reg}}.$

Proposition

Suppose that $\varphi : I \to \mathcal{M}$ is a cosmological curve. Then:

$$\widehat{arepsilon}_{arphi}(t) = \widehat{arepsilon}(\dot{arphi}(t)) \;\; orall t \in I$$

and

$$\hat{\eta}_arphi(t) = \hat{\eta}(\dot{arphi}(t)) \;\;,\;\; \hat{\eta}_arphi^{\parallel}(t) = \hat{\eta}^{\parallel}(\dot{arphi}(t)) \;\;orall t \in I_{ ext{reg}}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A < <p>A

nar

Dynamical slow roll approximations

Write the cosmological equation as:

$$abla_t \dot{arphi}(t) + rac{1}{M_0} \sqrt{2 \Phi(arphi(t))} \left[1 + \kappa_arphi(t)
ight]^{1/2} \dot{arphi}(t) + (ext{grad}_\mathcal{G} \Phi)(arphi(t)) = 0$$

The first dynamical slow roll approximation consists of neglecting κ_{φ} , i.e. approximating φ by the solution φ_s of the slow cosmological equation:

$$abla_t \dot{arphi}_s(t) + rac{1}{M_0} \sqrt{2 \Phi(arphi_s(t))} \dot{arphi}_s(t) + (\mathrm{grad}_\mathcal{G} \Phi)(arphi_s(t)) = 0$$

which satisfies the initial conditions:

$$\varphi_s(0) = \varphi(0) \text{ and } \dot{\varphi}_s(0) = \dot{\varphi}(0)$$

This is accurate when $\kappa_{\varphi}(0) \ll 1$, which amounts to the condition:

$$\kappa(arphi(0))=\kappa(arphi_s(0))=rac{||\dotarphi(0)||^2}{2\Phi(arphi(0))}\ll 1$$

A necessary condition for the approximation to be accurate at $t \neq 0$ is that:

$$\kappa(\dot{arphi}_{\mathfrak{s}}(t)) \ll 1 \Longleftrightarrow ||\dot{arphi}(t)|| \ll \sqrt{2\Phi(arphi(t))} \;\;,$$

where:

$$\kappa(\dot{\varphi}_s(t)) = \frac{||\dot{\varphi}_s(t)||^2}{2\Phi(\varphi_s(t))}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Write the cosmological equation as:

$$\mathcal{H}_{arphi}(t)(1-\hat{\eta}_{arphi}^{\parallel}(t))\dot{arphi}(t)-||\dot{arphi}(t)||\hat{\eta}_{arphi}^{\perp}(t)+(\mathrm{grad}\Phi)(arphi(t))=0$$
 .

The second dynamical slow roll approximation neglects $\hat{\eta}^{\parallel}(t)$, i.e. the quantity:

$$\left[
abla_t \dot{arphi}(t)
ight]^{\parallel} = \mathcal{G}(
abla_t \dot{arphi}(t), T_{arphi}(t)) = rac{\mathrm{d}}{\mathrm{d}t} || \dot{arphi}(t) || \;\;.$$

This replaces φ by the solution φ_{σ} of the no second roll equation:

$$\left[
abla_t \dot{arphi}_\sigma(t)
ight]^\perp + \mathcal{H}_{arphi\sigma}(t) \dot{arphi}_\sigma(t) + (\mathrm{grad} \Phi)(arphi_\sigma(t)) = 0$$

which satisfies the initial conditions:

$$arphi_{\sigma}(0)=arphi(0) \ \ ext{and} \ \ arphi_{\sigma}(t)=arphi(t) \ \ .$$

We have:

$$\left[
abla_t \dot{arphi}_\sigma(t)
ight]^\perp =
abla_t \dot{arphi}_\sigma(t) - \left(rac{\mathrm{d}}{\mathrm{d}t} \log || \dot{arphi}_\sigma(t) ||
ight) \dot{arphi}_\sigma(t) ~~.$$

When $\dot{\varphi}(t) = 0$, we define $[\nabla_t \dot{\varphi}(t)]^{\perp} \stackrel{\text{def.}}{=} \nabla_t \dot{\varphi}(t)$. The approximation is accurate when $|\hat{\eta}^{\parallel}(\varphi(t))| \ll 1$, which implies $\hat{\eta}^{\parallel}(\varphi_{\sigma}(t)) \ll 1$.

Consider the approximants obtained by requiring that $||\hat{\eta}_{\varphi}(t)||$ is very small, very large or close to one:

• The gradient flow condition $||\eta_{\varphi}(t)|| \ll 1$ implies the second slow roll condition $|\hat{\eta}_{\varphi}^{\parallel}(t)| \ll 1$ and leads to the gradient flow approximation. This degenerate dynamical approximation consists of replacing the cosmological equation with the modified gradient flow equation:

 $\mathcal{H}_{\varphi}(t)\dot{\varphi}(t) + (\mathrm{grad}\Phi)(\varphi(t)) = 0$,

whose integral curves are reparameterized gradient flow curves of $\Phi.$ Combining the gradient flow and first slow roll approximations produces the IR approximation, which is a specialization of the second order slow roll approximation and plays a crucial role in the dynamical RG flow analysis of cosmological models.

- The condition $||\hat{\eta}_{\varphi}(t)|| \gg 1$ is equivalent with the conservative condition $c(\dot{\varphi}(t)) \ll 1$, which forces $||\hat{\eta}_{\varphi}(t)|| \approx \frac{1}{c(\dot{\varphi}(t))}$ and leads to the conservative approximation.
- The condition $||\hat{\eta}_{\varphi}(t)|| \approx 1$ is equivalent with the **dissipative condition** $c(\dot{\varphi}(t)) \gg 1$, which leads to the dissipative approximation.

The conservative approximation

The conservative approximation considers only non-critical cosmological curves $\varphi: I \to \mathcal{M}_0$ (take $0 \in I$) and neglects the friction term, thus approximating φ for small |t| by the solution $\varphi_c: I_c \to \mathcal{M}$ of the conservative equation of $(\mathcal{M}, \mathcal{G}, \Phi)$:

 $\nabla_t \dot{\varphi}_c(t) + (\mathrm{grad} \Phi)(\varphi_c(t)) = 0 \quad \mathrm{with} \quad \varphi_c(0) = \varphi(0) \quad \mathrm{and} \quad \dot{\varphi}_c(0) = \dot{\varphi}(0) \quad .$

This is accurate when the conservative condition:

 $c(\dot{\varphi}(t)) \ll 1$

is satisfied. Let $E_{\varphi}(t) \stackrel{\text{def.}}{=} \frac{1}{2} ||\dot{\varphi}(t)||^2 + \Phi(\varphi(t))$ be the cosmological energy of φ and set $E_0 = E_{\varphi}(0)$.

Proposition

We have $||\dot{\varphi}_c(t)|| = \sqrt{2[E_0 - 2\Phi(\varphi_c(t))]}$ and $\mathcal{H}_{\varphi_c} = \frac{1}{M_0}\sqrt{2E_0}$ is independent of t. Moreover, the efold function and IR parameter of φ_c are given by:

$$\mathcal{N}_{\varphi_c}(T) = rac{1}{3} \int_0^T \mathrm{d}t \mathcal{H}(\dot{\varphi}(t)) \mathrm{d}t = rac{T}{3M_0} \sqrt{2E_0} \ , \ \kappa(\dot{\varphi}(t)) = rac{E_0}{\Phi(\varphi_c(t))} - 1$$

Thus $\dot{\varphi}_c(t)$ is inflationary iff:

 $\kappa_{arphi_c}(t) < rac{1}{2} \Longleftrightarrow \Phi(arphi_c(t)) > rac{2E_0}{3}$.

The dissipative approximation.

Proposition

A necessary condition for the conservative approximation to be accurate is $c_{E_0}(\varphi_c(t)) \ll 1$, where:

$$c_{E_0} \stackrel{\text{def.}}{=} \frac{2}{M_0} \frac{\left[E_0(E_0 - \Phi)\right]^{1/2}}{||\mathrm{d}\Phi||} = \frac{\left[E_0(E_0 - \Phi)\right]^{1/2}}{||\Xi||\Phi} \quad \forall E_0 > 0 \quad .$$

The dissipative approximation considers only non-critical cosmological curves φ and neglecting potential term in the cosmological equation, thus replacing φ by a solution φ_c of the dissipative equation:

$$abla_t \dot{\varphi}_d(t) + \mathcal{H}(\varphi_d(t)) \dot{\varphi}_d(t) = 0 \quad \text{with} \quad \varphi_d(0) = \varphi(0) \quad \text{and} \quad \dot{\varphi}_d(0) = \dot{\varphi}(0)$$

This is accurate when the dissipative condition $c_{\varphi}(t) \gg 1$ is satisfied.

Proposition

The dissipative approximant φ_d is a reparameterized geodesic of $(\mathcal{M}, \mathcal{G})$ whose time and proper legth parameter s are related by the ODE:

$$t^{\prime\prime}(s) - rac{1}{M_0}[||arphi_d(s)||^2 + 2\Phi(arphi_d(s))t^\prime(s)^2]^{1/2}t^\prime(s) = 0$$

and which satisfies $\varphi_d(0) = \varphi(0)$ and $\varphi'_d(0) = \frac{\dot{\varphi}(0)}{||\dot{\varphi}(0)||}$.

Proposition

A necssary condition for the dissipative approximation to be accurate is:

$$\frac{\sqrt{1+2t'(s)^2\Phi(\varphi_d(s))}}{2t'(s)^2\Phi(\varphi_d(s))||\Xi(\varphi_d(s))||} = \frac{\sqrt{1+2t'(s)^2\Phi(\varphi_d(s))}}{M_0t'(s)^2||(\mathrm{d}\Phi)(\varphi_d(s))||} \ll 1$$

Combining the dissipative approximation with the first slow roll approximation produces the UV approximation.

3

nar

The small and large Planck mass approximations

When $M_0 \gg 1$, the friction term can be neglected and cosmological curves are approximated by solutions of the conservative equation.

When $M_0 \ll 1$, the scale transformation with parameter $\epsilon = M_0$ brings the cosmological equation to the form:

$$M_0^2 \nabla_t \frac{\mathrm{d}\varphi_{M_0}(t)}{\mathrm{d}t} + \left[M_0^2 || \frac{\mathrm{d}\varphi_{M_0}(t)}{\mathrm{d}t} ||^2 + 2\Phi(\varphi_{M_0}(t)) \right]^{1/2} \frac{\mathrm{d}\varphi_{M_0}(t)}{\mathrm{d}t} + (\mathrm{grad}_{\mathcal{G}} \Phi)(\varphi_{M_0}(t)) = 0$$

where $\varphi_{M_0}(t) = \varphi(t/M_0)$. Hence the limit $M_0 \to 0$ coincides with the infrared limit with parameter $\epsilon = M_0$. In this limit, $\varphi(t)$ is well-approximated by the solution $\varphi_0(t)$ of the gradient flow equation of V:

$$rac{\mathrm{d} arphi_0(t)}{\mathrm{d} t} + (\mathrm{grad} V)(arphi_0(t)) = 0 \hspace{0.2cm} \mathrm{with} \hspace{0.2cm} arphi_0(0) = arphi(0) \hspace{0.2cm} .$$

The approximation is optimal for infrared optimal curves, which satisfy:

$$\dot{arphi}(0) = -rac{M_0}{\sqrt{2\Phi}}(\mathrm{grad}\Phi)(arphi(0))$$
 .

The approximation is accurate when:

$$\kappa_{arphi}(t) \stackrel{ ext{def.}}{=} rac{||\dot{arphi}(t)||^2}{2\Phi(arphi(t))} \ll 1 \ \, ext{and} \ \ ilde{\kappa}_{arphi}(t) \stackrel{ ext{def.}}{=} rac{||
abla_t\dot{arphi}(t)||}{||(ext{d}\Phi)(arphi(t))||} \ll 1 \ \, .$$

One can develop expansions in positive or negative powers of M_0 , \mathbb{R} , \mathbb{R} , \mathbb{R} , \mathbb{R}

17/17