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Cosmological models

Definition
An n-dimensional scalar triple is an ordered system (M, G, ®), where:

@ (M, Q) is a connected, borderless and complete Riemannian n-manifold
(called scalar manifold)

@ ® € C>(M,Rx0) is a smooth strictly positive function (called scalar
potential).

A cosmological model is a system (Mo, M, G, ®) where (M, G, ®) is a scalar
triple and the parameter My > 0 is called rescaled Planck mass.

Definition
The rescaled Hubble function H : TM — R of a cosmological model
(Mo, M, G, ®) is defined through:

H(u) MLO\/HUH2 F20(r(0) Vue TM

where 7w : TM — M is the bundle projection. The cosmological equation of
(Mo, M, G, ®) is the autonomous geometric second order ODE:

Vip(t) + H((1))o(1) + (gradg®)(p(t)) =0 .
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Cosmological dynamical systems

Definition

The cosmological semispray of (Mo, M, G, ®) is the defining smooth second
order vector field S € X(TM). The pair (TM,S) is called the cosmological
dynamical system of (M, G, ®) at rescaled Planck mass My. The flow
MNec>(D, TM) (with D C R x TM) of this dynamical system is called the
cosmological flow of (Mo, M, G, ®).

Definition
The solutions ¢ : | — M of the cosmological equation of (Mo, M, G, ®)
(where [ is a non-degenerate interval) are called cosmological curves, while

. s def. . .
their canonical lifts ¥ =" ¢ : | — T.M are called cosmological flow curves.
The latter are the integral curves of S.

Definition (Critical and non-critical sets)

def. def.

Critd L {m e M | (d)(m) =0} , Mo < M\ Critd

Definition
For any curve ¢ : | — M, define leg aef- {tel]|o(t)#0}.
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Physics origin

Each scalar triple defines a cosmological model on R*:
Sugsledl = [ dx gl [0 R(@) - 1e(6) 001

Define the rescaled Planck mass through My def. \/gM, where M is the
reduced Planck mass. Take g to describe a spatially flat FLRW universe:

ds; := —dt® + a°(t)dx® (x°=t , = (x",x*,x*) , a(t)>0Vt)

and ¢ to depend only on the cosmological time ¢ = ¢(t). Define the Hubble
parameter through H(t) = aef. zg When H > 0, the equations of motion are
equivalent with the cosmological equation of (Mo, M, G, ®) together with the

condition: .
H(t) = sH(A0)

which determines a up to an integration constant along each cosmological
curve.
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Dynamical approximants of the cosmological flow

Definition

A regular dynamical approximant of the cosmological semispray S of

(Mo, M, G, ®) is a smooth second order vector field So € X(T M) which
depends only on (Mo, M, G, ®). The gometric second order ODE defined on
M by Sp is called a regular approximant of the cosmological equation of
(Mo, M, G, ®).

A second order dynamical approximation defines an flow

Mo : Do CRx TM — M which can be viewed as an approximant of 1 on the
open set DN Dy C R x TM in any of the the C¥ weak Whitney (a.k.a.
compact-open) topologies of C°°(D N Dy, M).

Remark

One can also consider denenerate approximants of S, which are defined by pairs
(N, So), where N is a section of TM and Sp is a smooth vector field defined
on M. The latter describe first order geometric ODEs on M. In this case, the
m-pullback of Sy to N approximates the restriction of S to A/.

A natural class of dynamical approximants can be constructed using basic
scalar cosmological observables, which are functions f : U — R with U an open
subset of T M.
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Fundamental basic observables

Definition
The logarithmic and characteristic forms of the model (Mo, M, G, ®) are the
smooth exact 1-form =, W € Q*(M) defined through:

— def. Mo def. Mo ) S
= = —dlog® , ¥V = —-d =
2 O 8 (\@b V20

Let F = n*(TM) — TM be the Finsler bundle of M.

Definition

The first IR function and rescaled first slow roll function k,€: TM — Rxq are:

[lull®

A1) e k(u) J
20(r(a)) é(u) ——~ YueTM .

def.
r(u) = 1+ k(uw)

The relative gradient field and rescaled acceleration field g, 7 € F(7"/\/l, F) are:

def. (grad®)’(u) Ar  def.
qu) = ——5—— , u) = viu)+qlu
(o) BT ) ) +
def. Ta u def.
where n(u) = % and v(u) =
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Fundamental basic observables

We extend ||q|| to T Mo by setting ||q(u)|| = +00 when [|u|| = 0.
Definition

The conservative function ¢ : TMo — R>g of (M, G, ®) is:

def.

c(u) = Yue TMo .

= g
Proposition
Suppose that ||=|| is known. Then k and c are related on T M, through:

[k (u)(L + R(u)]? 1 =

c(u) = = , k(u) == =14+ 1+ 4c(u)?||=(xw(u))]|?
) = S = (8) = 5 |1+ VIF ac(upE(r(w)IP]

Definition
The rescaled second slow roll function and characteristic angle function
Al: TM =R, ©: TMo— [0,7] are:

cos ©(u)

() = (), () =10, 1+ =

, cosO(u) = Gr(wy(v(u), n(v)) -
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Fundamental basic observables

We have 7l (u) € [1 - C(lu),l + C(lu)].

-4 2

Figure: Admissible domain of ¢ and All. The right and left boundaries of the domain
are the hyperbolas c(fll — 1) = —1 and ¢(A — 1) = +1, which correspond
respectively to © = 0 and © = «. The vertical red line in the middle has equation

Al = 1 and corresponds to © = /2. The interval within which All can vary for a fixed
value of c is obtained by intersecting the corresponding horizontal line with the
domain shown in the figure. The strongly dissipative regime ¢ > 1 forces ﬁ” to be
close to one and hence the ultra slow roll approximation is accurate in this regime.
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Fundamental basic observables

Definition

The rescaled first slow roll parameter, rescaled acceleration and rescaled second
slow roll parameter of a curve ¢ : | — M are the maps &, : [ = R,

fp t heg — TM and Al : Loy — R defined through:

g,(t) = —;{:((:))2 = - ,H;(t) % log Ho(t) .

L oovdet. 1 Vep(t) oy def oo
fle(t) = .00 o0 fe(t) "= G(flp(t), To(t))

where T, (t) is the unit tangent vector to ¢ at t € heg.

Proposition
Suppose that ¢ : | — M is a cosmological curve. Then:
Eo(t) = &(p(t)) Vtel

and
o(t) = A(@(t)) , Ab(t) =7'(4()) Yt € heg -
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Dynamical slow roll approximations

Write the cosmological equation as:

Vealt) + o V/20(p(D) [1 + ro (]2 4(t) + (gradg®)(¢(t)) = 0
Mo

The first dynamical slow roll approximation consists of neglecting &, i.e.
approximating ¢ by the solution ¢ of the slow cosmological equation:

. 1 .
Veps(t) + I 20(ps(t))¢s(t) + (gradg®)(es(t)) = 0
which satisfies the initial conditions:

¢s(0) = ¢(0) and ¢5(0) = (0) .

This is accurate when k,(0) < 1, which amounts to the condition:

k(¢(0)) = K(ps(0)) = % <1 .

A necessary condition for the approximation to be accurate at t # 0 is that:

K(s(t)) € 1 <= [|o(t)]] € /2P(p

K(5:(0) = s

where:
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Dynamical slow roll approximations

Write the cosmological equation as:
Ho(£)(1 = Ak()(2) — [|6(0)]15 (£) + (grad®)(io(£)) =0 .
The second dynamical slow roll approximation neglects ﬁ”(t), i.e. the quantity:
. . d, .
[Vep(0)]! = G(Vei(t), To (1) = el
This replaces ¢ by the solution ¢, of the no second roll equation:

[Veo ()] + Mo, ()60 (1) + (grad®)(ps(t)) = 0

which satisfies the initial conditions:

©s(0) = ¢(0) and . (t) = (1) .
We have:

(Vi) = Veole) — ( g g1 (O] 4 (0) -

When ¢(t) = 0, we define [V.p(t)]* et V:¢(t). The approximation is
accurate when |7 (¢(t))| < 1, which implies #ll (¢, (t)) < 1.
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Approximations controlled by the norm of 7j,(t)

Consider the approximants obtained by requiring that ||7,(t)|| is very small,
very large or close to one:
@ The gradient flow condition ||n,(t)|| < 1 implies the second slow roll

~

condition |nl|9(t)| < 1 and leads to the gradient flow approximation. This
degenerate dynamical approximation consists of replacing the cosmological
equation with the modified gradient flow equation:

He(t)p(t) + (grad®)(v(t)) =0

whose integral curves are reparameterized gradient flow curves of .
Combining the gradient flow and first slow roll approximations produces
the IR approximation, which is a specialization of the second order slow
roll approximation and plays a crucial role in the dynamical RG flow
analysis of cosmological models.

@ The condition ||fj,(t)|| > 1 is equivalent with the conservative condition
c(4(t)) < 1, which forces ||, (t)|| = m and leads to the conservative
approximation.

@ The condition ||f,(t)|| & 1 is equivalent with the dissipative condition
c(¢(t)) > 1, which leads to the dissipative approximation.
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The conservative approximation

The conservative approximation considers only non-critical cosmological curves
@ : 1 — My (take 0 € I) and neglects the friction term, thus approximating ¢
for small |t| by the solution ¢, : lc — M of the conservative equation of
(M, G, ®):
Vigpe(t) + (grad®)(pe(t)) = 0 with ¢c(0) = ¢(0) and ¢c(0) = (0) .
This is accurate when the conservative condition:
c(o(t)) <« 1

is satisfied. Let E,(t) = aof- 1 L1¢(8)]]> + @(p(t)) be the cosmological energy of ¢
and set £y = E,(0).

Proposition

We have ||oc(t)|| = v/2[Eo — 2P(pc(t))] and Hy, = Miox/2Eo is independent
of t. Moreover, the efold function and IR parameter of . are given by:

NoT) =3 [ aer(@(e)at = i vVEB | w(8(8) = gt —

Thus ¢c(t) is inflationary iff:

Roelt) < 3 = O(pe(t)) > 22
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The dissipative approximation.

Proposition

A necessary condition for the conservative approximation to be accurate is
gy (pe(t)) < 1, where:

a2 [Eo(Eo— D)2 _ [Eo(Eo — )2

CEy, — = = VEy >0 .
C Mo ||d]| I=l®

The dissipative approximation considers only non-critical cosmological curves ¢
and neglecting potential term in the cosmological equation, thus replacing ¢ by
a solution @ of the dissipative equation:

Vipa(t) + H(pa(t))@a(t) =0 with ©4(0) = ¢(0) and ¢q(0) = ¢(0)
This is accurate when the dissipative condition c,(t) > 1 is satisfied.
Proposition

The dissipative approximant @4 is a reparameterized geodesic of (M, G) whose
time and proper legth parameter s are related by the ODE:

t"(s) - /\%()[\Iw&(S)H2 +20(i0a(s))t ()]t (s) = 0

and which satisfies ©4(0) = ¢(0) and ¢}(0) = Hifgg\l'

Calin Lazaroiu Dynamical approximations 15/17




produces the UV approximation.

2t/(s)2®(pa(s))l[=(wa(s))]  Mot'(s)?]|(dP)( ()l

A necssary condition for the dissipative approximation to be accurate is:
VI 20(5)°0(pa(s))

_ V1 +2(s)?0(pq(s))

Combining the dissipative approximation with the first slow roll approximation

<1
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The small and large Planck mass approximations

When My > 1, the friction term can be neglected and cosmological curves are
approximated by solutions of the conservative equation.

When My < 1, the scale transformation with parameter ¢ = My brings the
cosmological equation to the form:
Ao, (t depwy (t V2 Ao, (t
mw 20 T 22m(8) 2 4 g ()| 220 4 (graag0) (om (1)) = 0
dt dt dt
where pum, (t) = ¢(t/Mp). Hence the limit My — 0 coincides with the infrared
limit with parameter e = Mp. In this limit, (t) is well-approximated by the
solution ¢o(t) of the gradient flow equation of V:

d<PdO( ) + (gradV)(po(t)) =0 with ¢o(0) = ¢(0) .

The approximation is optimal for infrared optimal curves, which satisfy:

(0) = %(yad@@(f))) .

The approximation is accurate when:

)de_f eI )12 aef.  [|Vep(t)l| 1
20(p(t)) [[(d®)((t ))H

One can develop expansions in positive or negative powers of M.

Ke(t <1 and Re(t) =
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