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Cosmological models

Definition

An n-dimensional scalar triple is an ordered system (M,G,Φ), where:

(M,G) is a connected, borderless and complete Riemannian n-manifold
(called scalar manifold)

Φ ∈ C∞(M,R>0) is a smooth strictly positive function (called scalar
potential).

A cosmological model is a system (M0,M,G,Φ) where (M,G,Φ) is a scalar
triple and the parameter M0 > 0 is called rescaled Planck mass.

Definition

The rescaled Hubble function H : TM→ R>0 of a cosmological model
(M0,M,G,Φ) is defined through:

H(u)
def.
=

1

M0

√
||u||2 + 2Φ(π(u)) ∀u ∈ TM

where π : TM→M is the bundle projection. The cosmological equation of
(M0,M,G,Φ) is the autonomous geometric second order ODE:

∇t ϕ̇(t) +H(ϕ̇(t))ϕ̇(t) + (gradGΦ)(ϕ(t)) = 0 .
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Cosmological dynamical systems

Definition

The cosmological semispray of (M0,M,G,Φ) is the defining smooth second
order vector field S ∈ X (TM). The pair (TM, S) is called the cosmological
dynamical system of (M,G,Φ) at rescaled Planck mass M0. The flow
Π ∈ C∞(D,TM) (with D ⊂ R× TM) of this dynamical system is called the
cosmological flow of (M0,M,G,Φ).

Definition

The solutions ϕ : I →M of the cosmological equation of (M0,M,G,Φ)
(where I is a non-degenerate interval) are called cosmological curves, while

their canonical lifts γ
def.
= ϕ̇ : I → TM are called cosmological flow curves.

The latter are the integral curves of S .

Definition (Critical and non-critical sets)

CritΦ
def.
= {m ∈M | (dΦ)(m) = 0} , M0

def.
= M\ CritΦ

Definition

For any curve ϕ : I →M, define Ireg
def.
= {t ∈ I | ϕ̇(t) 6= 0} .
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Physics origin

Each scalar triple defines a cosmological model on R4:

SM,G,Φ[g , ϕ] =

∫
R4

d4x
√
|g |
[
M2

2
R(g)− 1

2
Trgϕ

∗(G)− Φ ◦ ϕ
]

.

Define the rescaled Planck mass through M0
def.
=
√

2
3
M, where M is the

reduced Planck mass. Take g to describe a spatially flat FLRW universe:

ds2
g := −dt2 + a2(t)d~x2 (x0 = t , ~x = (x1, x2, x3) , a(t) > 0 ∀t)

and ϕ to depend only on the cosmological time ϕ = ϕ(t). Define the Hubble

parameter through H(t)
def.
= ȧ(t)

a(t)
. When H > 0, the equations of motion are

equivalent with the cosmological equation of (M0,M,G,Φ) together with the
condition:

H(t) =
1

3
H(ϕ̇(t)) ,

which determines a up to an integration constant along each cosmological
curve.
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Dynamical approximants of the cosmological flow

Definition

A regular dynamical approximant of the cosmological semispray S of
(M0,M,G,Φ) is a smooth second order vector field S0 ∈ X (TM) which
depends only on (M0,M,G,Φ). The gometric second order ODE defined on
M by S0 is called a regular approximant of the cosmological equation of
(M0,M,G,Φ).

A second order dynamical approximation defines an flow
Π0 : D0 ⊂ R× TM→M which can be viewed as an approximant of Π on the
open set D ∩D0 ⊂ R× TM in any of the the C k weak Whitney (a.k.a.
compact-open) topologies of C∞(D ∩D0,M).

Remark

One can also consider denenerate approximants of S , which are defined by pairs
(N ,S0), where N is a section of TM and S0 is a smooth vector field defined
on M. The latter describe first order geometric ODEs on M. In this case, the
π-pullback of S0 to N approximates the restriction of S to N .

A natural class of dynamical approximants can be constructed using basic
scalar cosmological observables, which are functions f : U → R with U an open
subset of TM.
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Fundamental basic observables

Definition

The logarithmic and characteristic forms of the model (M0,M,G,Φ) are the
smooth exact 1-form Ξ,Ψ ∈ Ω1(M) defined through:

Ξ
def.
=

M0

2
d log Φ , Ψ

def.
= −d

(
M0√
2Φ

)
=

Ξ√
2Φ

.

Let F = π∗(TM)→ TM be the Finsler bundle of M.

Definition

The first IR function and rescaled first slow roll function κ, ε̂ : TM→ R≥0 are:

κ(u)
def.
=

||u||2

2Φ(π(u))
, ε̂(u)

def.
=

κ(u)

1 + κ(u)
∀u ∈ TM .

The relative gradient field and rescaled acceleration field q, η̂ ∈ Γ(ṪM,F ) are:

q(u)
def.
=

(gradΦ)v (u)

H(u)||u|| , η̂(u)
def.
= ν(u) + q(u)

where n(u)
def.
= (gradΦ)(π(u))
||(dΦ)(π(u))|| and ν(u)

def.
= u
||u|| for u ∈ ṪM.
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Fundamental basic observables

We extend ||q|| to TM0 by setting ||q(u)|| = +∞ when ||u|| = 0.

Definition

The conservative function c : TM0 → R≥0 of (M,G,Φ) is:

c(u)
def.
=

1

||q(u)|| ∀u ∈ TM0 .

Proposition

Suppose that ||Ξ|| is known. Then κ and c are related on TM0 through:

c(u) =
[κ(u)(1 + κ(u))]1/2

||Ξ(π(u))|| , κ(u) =
1

2

[
−1 +

√
1 + 4c(u)2||Ξ(π(u))||2

]
.

Definition

The rescaled second slow roll function and characteristic angle function
η̂‖ : ṪM→ R, Θ : ṪM0 → [0, π] are:

η̂‖(u) = G(η̂(u), ν(u)) =ṪM0
1 +

cos Θ(u)

c(u)
, cos Θ(u)

def.
= Gπ(u)(ν(u), n(u)) .
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Fundamental basic observables

We have η̂‖(u) ∈
[
1− 1

c(u)
, 1 + 1

c(u)

]
.

-4 -2 2 4 6

η
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c

Figure: Admissible domain of c and η̂‖. The right and left boundaries of the domain
are the hyperbolas c(η̂‖ − 1) = −1 and c(η̂‖ − 1) = +1, which correspond
respectively to Θ = 0 and Θ = π. The vertical red line in the middle has equation
η̂‖ = 1 and corresponds to Θ = π/2. The interval within which η̂‖ can vary for a fixed
value of c is obtained by intersecting the corresponding horizontal line with the
domain shown in the figure. The strongly dissipative regime c � 1 forces η̂‖ to be
close to one and hence the ultra slow roll approximation is accurate in this regime.
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Fundamental basic observables

Definition

The rescaled first slow roll parameter, rescaled acceleration and rescaled second
slow roll parameter of a curve ϕ : I →M are the maps ε̂ϕ : I → R,

η̂ϕ : Ireg → TM and η̂
‖
ϕ : Ireg → R defined through:

ε̂ϕ(t)
def.
= − Ḣϕ(t)

Hϕ(t)2
= − 1

Hϕ(t)

d

dt
logHϕ(t) .

η̂ϕ(t)
def.
= − 1

Hϕ(t)

∇t ϕ̇(t)

||ϕ̇(t)|| , η̂‖ϕ(t)
def.
= G(η̂ϕ(t),Tϕ(t)) ,

where Tϕ(t) is the unit tangent vector to ϕ at t ∈ Ireg.

Proposition

Suppose that ϕ : I →M is a cosmological curve. Then:

ε̂ϕ(t) = ε̂(ϕ̇(t)) ∀t ∈ I

and
η̂ϕ(t) = η̂(ϕ̇(t)) , η̂‖ϕ(t) = η̂‖(ϕ̇(t)) ∀t ∈ Ireg .

Calin Lazaroiu Dynamical approximations 10/17



Dynamical slow roll approximations

Write the cosmological equation as:

∇t ϕ̇(t) +
1

M0

√
2Φ(ϕ(t)) [1 + κϕ(t)]1/2 ϕ̇(t) + (gradGΦ)(ϕ(t)) = 0 .

The first dynamical slow roll approximation consists of neglecting κϕ, i.e.
approximating ϕ by the solution ϕs of the slow cosmological equation:

∇t ϕ̇s(t) +
1

M0

√
2Φ(ϕs(t))ϕ̇s(t) + (gradGΦ)(ϕs(t)) = 0

which satisfies the initial conditions:

ϕs(0) = ϕ(0) and ϕ̇s(0) = ϕ̇(0) .

This is accurate when κϕ(0)� 1, which amounts to the condition:

κ(ϕ(0)) = κ(ϕs(0)) =
||ϕ̇(0)||2

2Φ(ϕ(0))
� 1 .

A necessary condition for the approximation to be accurate at t 6= 0 is that:

κ(ϕ̇s(t))� 1⇐⇒ ||ϕ̇(t)|| �
√

2Φ(ϕ(t)) ,

where:

κ(ϕ̇s(t)) =
||ϕ̇s(t)||2

2Φ(ϕs(t))
.
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Dynamical slow roll approximations

Write the cosmological equation as:

Hϕ(t)(1− η̂‖ϕ(t))ϕ̇(t)− ||ϕ̇(t)||η̂⊥ϕ (t) + (gradΦ)(ϕ(t)) = 0 .

The second dynamical slow roll approximation neglects η̂‖(t), i.e. the quantity:

[∇t ϕ̇(t)]‖ = G(∇t ϕ̇(t),Tϕ(t)) =
d

dt
||ϕ̇(t)|| .

This replaces ϕ by the solution ϕσ of the no second roll equation:

[∇t ϕ̇σ(t)]⊥ +Hϕσ (t)ϕ̇σ(t) + (gradΦ)(ϕσ(t)) = 0

which satisfies the initial conditions:

ϕσ(0) = ϕ(0) and ϕσ(t) = ϕ(t) .

We have:

[∇t ϕ̇σ(t)]⊥ = ∇t ϕ̇σ(t)−
(

d

dt
log ||ϕ̇σ(t)||

)
ϕ̇σ(t) .

When ϕ̇(t) = 0, we define [∇t ϕ̇(t)]⊥
def.
= ∇t ϕ̇(t). The approximation is

accurate when |η̂‖(ϕ(t))| � 1, which implies η̂‖(ϕσ(t))� 1.
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Approximations controlled by the norm of η̂ϕ(t)

Consider the approximants obtained by requiring that ||η̂ϕ(t)|| is very small,
very large or close to one:

The gradient flow condition ||ηϕ(t)|| � 1 implies the second slow roll

condition |η̂‖ϕ(t)| � 1 and leads to the gradient flow approximation. This
degenerate dynamical approximation consists of replacing the cosmological
equation with the modified gradient flow equation:

Hϕ(t)ϕ̇(t) + (gradΦ)(ϕ(t)) = 0 ,

whose integral curves are reparameterized gradient flow curves of Φ.
Combining the gradient flow and first slow roll approximations produces
the IR approximation, which is a specialization of the second order slow
roll approximation and plays a crucial role in the dynamical RG flow
analysis of cosmological models.

The condition ||η̂ϕ(t)|| � 1 is equivalent with the conservative condition
c(ϕ̇(t))� 1, which forces ||η̂ϕ(t)|| ≈ 1

c(ϕ̇(t))
and leads to the conservative

approximation.

The condition ||η̂ϕ(t)|| ≈ 1 is equivalent with the dissipative condition
c(ϕ̇(t))� 1, which leads to the dissipative approximation.
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The conservative approximation

The conservative approximation considers only non-critical cosmological curves
ϕ : I →M0 (take 0 ∈ I ) and neglects the friction term, thus approximating ϕ
for small |t| by the solution ϕc : Ic →M of the conservative equation of
(M,G,Φ):

∇t ϕ̇c(t) + (gradΦ)(ϕc(t)) = 0 with ϕc(0) = ϕ(0) and ϕ̇c(0) = ϕ̇(0) .

This is accurate when the conservative condition:

c(ϕ̇(t))� 1

is satisfied. Let Eϕ(t)
def.
= 1

2
||ϕ̇(t)||2 + Φ(ϕ(t)) be the cosmological energy of ϕ

and set E0 = Eϕ(0).

Proposition

We have ||ϕ̇c(t)|| =
√

2[E0 − 2Φ(ϕc(t))] and Hϕc = 1
M0

√
2E0 is independent

of t. Moreover, the efold function and IR parameter of ϕc are given by:

Nϕc (T ) =
1

3

∫ T

0

dtH(ϕ̇(t))dt =
T

3M0

√
2E0 , κ(ϕ̇(t)) =

E0

Φ(ϕc(t))
− 1 .

Thus ϕ̇c(t) is inflationary iff:

κϕc (t) <
1

2
⇐⇒ Φ(ϕc(t)) >

2E0

3
.
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The dissipative approximation.

Proposition

A necessary condition for the conservative approximation to be accurate is
cE0 (ϕc(t))� 1, where:

cE0

def.
=

2

M0

[E0(E0 − Φ)]1/2

||dΦ|| =
[E0(E0 − Φ)]1/2

||Ξ||Φ ∀E0 > 0 .

The dissipative approximation considers only non-critical cosmological curves ϕ
and neglecting potential term in the cosmological equation, thus replacing ϕ by
a solution ϕc of the dissipative equation:

∇t ϕ̇d(t) +H(ϕd(t))ϕ̇d(t) = 0 with ϕd(0) = ϕ(0) and ϕ̇d(0) = ϕ̇(0) .

This is accurate when the dissipative condition cϕ(t)� 1 is satisfied.

Proposition

The dissipative approximant ϕd is a reparameterized geodesic of (M,G) whose
time and proper legth parameter s are related by the ODE:

t′′(s)− 1

M0
[||ϕ′d(s)||2 + 2Φ(ϕd(s))t′(s)2]1/2t′(s) = 0

and which satisfies ϕd(0) = ϕ(0) and ϕ′d(0) = ϕ̇(0)
||ϕ̇(0)|| .
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The dissipative approximation

Proposition

A necssary condition for the dissipative approximation to be accurate is:√
1 + 2t′(s)2Φ(ϕd(s))

2t′(s)2Φ(ϕd(s))||Ξ(ϕd(s))|| =

√
1 + 2t′(s)2Φ(ϕd(s))

M0t′(s)2||(dΦ)(ϕd(s))|| � 1

Combining the dissipative approximation with the first slow roll approximation
produces the UV approximation.
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The small and large Planck mass approximations

When M0 � 1, the friction term can be neglected and cosmological curves are
approximated by solutions of the conservative equation.

When M0 � 1, the scale transformation with parameter ε = M0 brings the
cosmological equation to the form:

M2
0∇t

dϕM0 (t)

dt
+

[
M2

0 ||
dϕM0 (t)

dt
||2 + 2Φ(ϕM0 (t))

]1/2
dϕM0 (t)

dt
+(gradGΦ)(ϕM0 (t)) = 0 ,

where ϕM0 (t) = ϕ(t/M0). Hence the limit M0 → 0 coincides with the infrared
limit with parameter ε = M0. In this limit, ϕ(t) is well-approximated by the
solution ϕ0(t) of the gradient flow equation of V :

dϕ0(t)

dt
+ (gradV )(ϕ0(t)) = 0 with ϕ0(0) = ϕ(0) .

The approximation is optimal for infrared optimal curves, which satisfy:

ϕ̇(0) = − M0√
2Φ

(gradΦ)(ϕ(0)) .

The approximation is accurate when:

κϕ(t)
def.
=
||ϕ̇(t)||2

2Φ(ϕ(t))
� 1 and κ̃ϕ(t)

def.
=

||∇t ϕ̇(t)||
||(dΦ)(ϕ(t))|| � 1 .

One can develop expansions in positive or negative powers of M0.
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