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We consider the following problem:n homogeneous balls B1, . . . ,Bn

with centers O1, ...,On and the same radius r roll without slipping around

a fixed sphere S0 with center O and radius R . A dynamically

nonsymmetric sphere S of radius R + 2r with the center that coincides

with the center O of the fixed sphere S0 rolls without slipping over the

moving balls B1, . . . ,Bn.
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Figure 1. Spherical ball bearing for n = 3



Let

O~e0
1,~e

0
2,~e

0
3, O~e1,~e2,~e3, Oi~e

i
1,~e

i
2,~e

i
3, i = 1, . . . , n

be positively oriented reference frames rigidly attached to the
spheres S0, S, and the balls Bi , i = 1, . . . , n, respectively. By
g, gi ∈ SO(3) we denote the matrices that map the moving frames
O~e1,~e2,~e3 and Oi~e

i
1,~e

i
2,~e

i
3 to the fixed frame O~e0

1,~e
0
2,~e

0
3:

gjk = 〈~e0
j ,~ek〉, gi ,jk = 〈~e0

j ,~e
i
k〉, j , k = 1, 2, 3, i = 1, . . . , n.



We apply the standard isomorphism between the Lie algebras
(so(3), [·, ·]) and (R3,×)

aij = −εijkak , i , j , k = 1, 2, 3, (0.1)

The skew-symmetric matrices

ω = ġg−1, ωi = ġig
−1
i

correspond to the angular velocities ~ω, ~ωi of the sphere S and the
i -th ball Bi in the fixed reference frame O~e0

1,~e
0
2,~e

0
3 attached to the

sphere S0. The matrices

Ω = g−1ġ = g−1ωg, Wi = g−1
i ġi = g−1

i ωigi

correspond to the angular velocities ~Ω, ~Wi of S and Bi in the
frames O~e1,~e2,~e3 and Oi~e

i
1,~e

i
2,~e

i
3 attached to the sphere S and the

balls Bi , respectively.
We have

~ω = g~Ω, ~ωi = gi ~Wi .



Let I be the inertia operator of the outer sphere S. We choose the
moving frame O~e1,~e2,~e3, such that O~e1, O~e2, O~e3 are the
principal axes of inertia: I = diag(A,B ,C ). Let diag(Ii , Ii , Ii ) and
mi be the inertia operator and the mass of the i -th ball Bi . Then
the configuration space and the kinetic energy of the problem are
given by:

Q =SO(3)n+1 × (S2)n{g, g1, . . . , gn, ~γ1, . . . , ~γn},

T =
1

2
〈I ~Ω, ~Ω〉+

1

2

n
∑

i=1

Ii〈 ~Wi , ~Wi 〉+
1

2

n
∑

i=1

mi 〈~vOi
, ~vOi

〉

=
1

2
〈I ~Ω, ~Ω〉+

1

2

n
∑

i=1

Ii〈~ωi , ~ωi〉+
1

2

n
∑

i=1

mi〈~vOi
, ~vOi

〉.

Here ~γi is the unit vector

~γi =

−−→
OOi

|
−−→
OOi |

determining the position Oi of the centre of i -th ball Bi and
~vOi

= (R + r)~̇γi is its velocity, i = 1, . . . , n.



Let us denote the contact points of the balls B1, . . . ,Bn with the
spheres S0 and S by A1, ...,An and B1,B2, ...,Bn, respectively. The
condition that the rolling of the balls B1, . . . ,Bn and the sphere S
are without slipping leads to the nonholonomic constraints:

~vOi
= r~ωi×~γi , ~vOi

= (R+2r)~ω×~γi− r~ωi×~γi , i = 1, ..., n.
(0.2)

The dimension of the configuration space Q is 5n+ 3. There are 4n
independent constraints in (0.2), defining a nonintegrable
distribution D ⊂ TQ. Therefore, the dimension of the vector
subspaces of admissible velocities Dq ⊂ TqQ is n+ 3, q ∈ Q. The
phase space of the system has the dimension 6n + 6, which is the
dimension of the bundle D as a submanifold of TQ.



The kinetic energy and the constraints are invariant with respect to
the SO(3)n+1–action defined by

(g, g1, . . . , gn, ~γ1, . . . , ~γn) 7−→ (ag, ag1a
−1
1 , . . . , agna

−1
n , a~γ1, . . . , a~γn),

(0.3)
a, a1, . . . , an ∈ SO(3), representing a freedom in the choice of the
reference frames

O~e0
1,~e

0
2,~e

0
3, Oi~e

i
1,~e

i
2,~e

i
3, i = 1, . . . , n.

Thus, for the coordinates in the space (TQ)/SO(3)n+1 we can take
the angular velocities and the unit position vectors in the reference
frame attached to the sphere S:

(TQ)/SO(3)n+1 ∼= R
3(n+1)×(TS2)n{~Ω, ~Ω1, . . . , ~Ωn, ~̇Γ1, . . . , ~̇Γn,~Γ1, . . . ,~Γn}.



In the moving reference frame O~e1,~e2,~e3, the constraints become:

~VOi
= (R + 2r)~Ω× ~Γi − r~Ωi × ~Γi , (0.4)

~VOi
= r~Ωi × ~Γi , i = 1, . . . , n, (0.5)

defining the reduced phase space

M = D/SO(3)n+1 ⊂ (TQ)/SO(3)n+1 of dimension 3n + 3.
Since both the kinetic energy and the constraints are invariant with
respect to the SO(3)n+1–action (0.3), the equations of motion are
also SO(3)n+1–invariant. Thus, they induce a well defined system
on the reduced phase space M.



Lemma
The kinematic part of the equations of motion of the spherical ball

bearing system is:

~̇Γi =
R

2R + 2r
~Γi × ~Ω, i = 1, . . . , n. (0.6)

Proof. Consider the fixed reference frame O~e0
1,~e

0
2,~e

0
3. One has

−̇→
OO i + ~ωi ×

−−→
OiAi = 0.

Therefore, (R + r)~̇γi − r~ωi × ~γi = 0, or equivalently

~̇γi =
r

R + r
~ωi × ~γi .

The equation in the moving reference frame O~e1,~e2,~e3 has the
form

~̇Γi + ~Ω× ~Γi =
r

R + r
~Ωi × ~Γi .



Thus, we get
~̇Γi =

( r

R + r
~Ωi − ~Ω

)

× ~Γi .

From the constraints we obtain

~Ωi × ~Γi =
R + 2r

2r
~Ω× ~Γi , i = 1, . . . , n.

Finally, the equations can be written in a more convenient form

~̇Γi =
R

2R + 2r
~Γi × ~Ω, i = 1, . . . , n.



As a consequence, we have:

Proposition

The following functions are the first integrals of motion:

〈~Γi ,~Γj 〉 = γij = const, i , j = 1, . . . , n.

In other words, the centers Oi of the homogeneous balls Bi are in
rest in relation to each other.



Let ~FBi
and ~FAi

be the reaction forces that act on the ball Bi at
the points Bi and Ai , respectively. The reaction force at the point
Bi on the sphere S is then −~FBi

.

Lemma
The dynamical part of the equations of motion of the spherical ball

bearing system is:

Ii ~̇Ωi = Ii ~Ωi × ~Ω+ r~Γi × (~FBi
− ~FAi

),

mi
~̇VOi

= mi
~VOi

× ~Ω+ ~FBi
+ ~FAi

, i = 1, ..., n

I ~̇Ω = I ~Ω × ~Ω−
n

∑

i=1

(R + 2r)~Γi × ~FBi
.



Proposition

The projections of the angular velocities ~Ωi to to the directions ~Γi
are the first integrals of motion:

〈~Ωi ,~Γi 〉 = ci = const, i = 1, ..., n.

Proof.

d

dt
〈~Ωi ,~Γi 〉 =〈~̇Ωi ,~Γi 〉+ 〈~Ωi , ~̇Γi 〉

=〈~Ωi × ~Ω,~Γi 〉+ 〈
r

Ii
~Γi × (~FBi

− ~FAi
),~Γi 〉

+ 〈~Ωi ,
r

R + r
~Ωi × ~Γi 〉 − 〈~Ωi , ~Ω× ~Γi 〉 = 0.



The reduced system
From the constraints we get

〈~Ω× ~Γi , ~Ωi 〉 = 0.

Moreover, we obtain:

~Ωi = 〈~Γi , ~Ωi 〉~Γi +
R + 2r

2r
~Ω−

R + 2r

2r
〈~Γi , ~Ω〉~Γi .

Further, we get that the reduced phase space M = D/SO(3)n+1 is
foliated on 2n + 3–dimensional invariant varieties

Mc : 〈~Ωi ,~Γi 〉 = ci = const, i = 1, ..., n.

On the invariant variety Mc , the vector-functions ~Ωi can be
uniquely expressed as functions of ~Ω, ~Γi :

~Ωi = ci~Γi +
R + 2r

2r
~Ω−

R + 2r

2r
〈~Γi , ~Ω〉~Γi .

Whence, ~Ω determines all velocities of the system on Mc and Mc

is diffeomorphic to the second reduced phase space

N = R
3 ×

(

S2
)n
{~Ω,~Γ1, . . . ,~Γn}.



Thus, instead of the derivation of the torques of all reaction forces,
it is sufficient to find the torque in the equation on a given invariant
variety Mc . To simplify the equations, we introduce the parameters

ε =
R

2R + 2r
and δ =

R + 2r

2r
.

We define the modified operator of inertia I as

I = I + δ2

n
∑

i=1

(Ii +mi r
2) pri ,

where pri : R
3 → ~Γ⊥i is the orthogonal projection to the plane

orthogonal to ~Γi . We set

~M = I~Ω = I ~Ω+ δ2
n

∑

i=1

(Ii +mi r
2)~Ω− δ2

n
∑

i=1

(Ii +mi r
2)〈~Γi , ~Ω〉~Γi ,

~N = δ

n
∑

i=1

Iici~Γi .



Theorem
The reduction of the spherical ball bearing problem to Mc

∼= N is

described by the equations

d

dt
~M = ~M × ~Ω+ (1 − ε) ~N × ~Ω, (0.7)

d

dt
~Γi = ε~Γi × ~Ω, i = 1, . . . , n. (0.8)

The kinetic energy of the system takes the form

T =
1

2
〈 ~M, ~Ω〉+

1

2

n
∑

i=1

Iic
2
i .

Also, since
d

dt
~N = ε ~N × ~Ω,

the equation (0.7) is equivalent to

d

dt
( ~M + ~N) = ( ~M + ~N)× ~Ω. (0.9)



Proof. From the equations one have

~Γi ×~FBi
=

1

2r
(Ii ~̇Ωi + ~Ω× (Ii ~Ωi)) +

mi

2
~Γi × ~̇VOi

+
mi

2
~Γi × (~Ω× ~VOi

)

By plugging the last expression in the third equation of motion, it
becomes

I ~̇Ω+ ~Ω× I ~Ω = −
n

∑

i=1

[R + 2r

2r
(Ii ~̇Ωi + ~Ω× (Ii ~Ωi ))+

mi (R + 2r)

2
~Γi × ~̇VOi

+
mi(R + 2r)

2
~Γi × (~Ω × ~VOi

)
]

.

(0.10)

We get ~̇Γi × ~VOi
= 0, and, therefore

d

dt

(

~Γi × ~VOi

)

= ~Γi × ~̇VOi
.



Also, we have

~Γi × (~Ω× ~VOi
) = ~Ω× (~Γi × ~VOi

).

Having in mind the last two expressions, the equation (0.10)
becomes

d

dt

(

I ~Ω+

n
∑

i=1

(R + 2r

2r
Ii ~Ωi +

mi (R + 2r)

2
~Γi × ~VOi

)

)

=

− ~Ω×
(

I ~Ω+

n
∑

i=1

(R + 2r

2r
Ii ~Ωi +

mi (R + 2r)

2
~Γi × ~VOi

)

)

(0.11)
Finally, using the definitions of parameters ε and δ and the vectors
~M and ~N , the equation (0.11) takes the form (0.9).



Remark
If we formally set ε = 1 in the system, we obtain the equation of
the spherical support system introduced by Fedorov (Vestnik MGU
1988). The system describes the rolling without slipping of a
dynamically nonsymmetric sphere S over n homogeneous balls
B1, . . . ,Bn of possibly different radii, but with fixed centers. It is an
example of a class of nonhamiltonian L+R systems on Lie groups
with an invariant measure. On the other hand, if we set ~N = 0, we
obtain an example ε–modified L+R system studied by Jovanovic
(RCD 2015).
The rolling of a homogeneous ball over a dynamically asymmetric
sphere S is introduced by Borisov, Kilin, and Mamaev (RCD, 2011)



Corollary

The complete equations of motion of the sphere S and the balls

B1, . . . ,Bn of the spherical ball bearing problem on the invariant

manifold Dc are given by

~̇M = ~M × ~Ω+ (1 − ε) ~N × ~Ω,

ġ = gΩ,

ġi = gΩi(~Ω,~Γi , ci )gi ,

~̇Γi = ε~Γi × ~Ω, i = 1, . . . , n,

Here Ω and Ωi(~Ω,~Γi , ci ) are skew-symmetric matrices related to ~Ω
and ~Ωi ; ~Ωi = ~Ωi(~Ω,~Γi , ci ).



The associated system on R
3 × Sym(3) and an invariant

measure
Let

Γ = −δ2
n

∑

i=1

(Ii +mi r
2) pri

be the symmetric operator. Then the modified inertia operator I
can be rewritten as:

I = I−Γ, Γ = δ2
n

∑

i=1

(Ii+mi r
2)
(

~Γi⊗~Γi−E
)

, E = diag(1, 1, 1).

Along the flow of the system, Γ satisfies the equation

d

dt
Γ = ε[Γ,Ω], (0.12)

where Ω is the skew-symmetric matrix that corresponds to ~Ω.
Let us consider a special case when c1 = 0, . . . , cn = 0. This means
that there are no twisting of the balls, i.e. the vectors ~Ωi and ~Γi are
orthogonal to each other. Note that this conditions are not
nonholonomic constraints, but the first integrals of motion.



As a result we obtain the associated system

~̇M = ~M × ~Ω, ~M = I~Ω = I ~Ω− Γ~Ω,

Γ̇ = ε[Γ,Ω]
(0.13)

on the space R
3 × Sym(3), where Sym(3) are 3 × 3 symmetric

matrices. The system belongs to the class of ε–modified L+R
systems studied by Jovanovic (RCD, 2015).
Let dΩ and dΓ be the standard measures on R

3{~Ω} and
Sym(3){Γ}. The system (0.13) possesses the invariant measure
µ(Γ)dΩ ∧ dΓ with the density µ(Γ) =

√

det(I) Jovanovic (RCD,
2015) Therefore, µ =

√

det(I) is a natural candidate for the density
of an invariant measure of the system (0.7), (0.8) when the
constants ci are different from zero.



Theorem
For arbitrary values of parameters ci , the reduced system (0.7),
(0.8) has the invariant measure

µ(~Γ1, . . . ,~Γn)dΩ ∧ σ1 ∧ · · · ∧ σn, µ =
√

det(I) =
√

det(I − Γ),
(0.14)

where dΩ and σi are the standard measures on R
3{~Ω} and S2{~Γi},

i = 1, . . . , n.

The proof of the Theorem is a variant of a corresponding proof for
ε–modified L+R systems (Jovanovic, RCD 2015). It uses

Lemma
Let A be a symmetric matrix and let ~Ω ∈ R

3 corresponds to

Ω ∈ so(3) . Then:

(i) the symmetric part of the matrix ∂
(

A~Ω× ~Ω
)

/∂~Ω is equal to
1
2
[A,Ω];

(ii) A~Ω× ~Ω = [A,Ω]~Ω.



Note that the existence of an invariant measure for nonholonomic
problems is well studied. A closely related problem is the
integrability of the nonholonomic systems. Here we have the
following statement.

Proposition

The system (0.7), (0.8) always has the following first integrals

F1 =
1

2
〈 ~M, ~Ω〉, F2 = 〈 ~M+ ~N, ~M+ ~N〉, Fij = 〈~Γi ,~Γj 〉, 1 ≤ i < j ≤ n.

Thus, in the special case n = 1, we have the 5-dimensional phase
space N = R

3 × S2{~Ω,~Γ1}, and the system has two first integrals
and an invariant measure. For the integrability, one needs to find a
third independent first integral. We will study integrability in the
spherical ball bearing problems in a separate paper. Also, it would
be interesting to study the appropriate nonholonomic systems in
arbitrary dimension R

m, m > 3.



Planar system - the three balls bearings problem

Consider the limit, when the radii of the spheres S0 and S both
tend to infinity. For simplicity, we consider the case n = 3. As a
result, we obtain rolling without slipping of three homogeneous
balls B1,B2,B3 of the radius r and masses m1,m2,m3 over the
fixed plane Σ0, together with the moving plane Σ of the mass m
that is placed over the balls, such that there is no slipping between
the balls and moving plane. We will refer to the system as the

planar three balls bearing problem. All considerations can be easily
adopted for the case of the planar ball bearing with rolling of n
homogeneous balls.
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Figure 2. Planar three balls bearing problem
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