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Outline

We study the Hawking effect on quantum entanglement for
two-mode Gaussian states in the presence of a
Schwarzschild black hole.
For a two-mode bosonic system, starting with an initial
squeezed thermal state, the influence of Hawking radiation
consists in destroying the entanglement between the mode
observed by an inertial observer Alice and a mode
described by an accelerated observer Bob that hovers
near the event horizon of the black hole.
However in the case of the modes described by Bob and
an imaginary observer inside the event horizon anti-Bob
quantum entanglement is created, i.e. entanglement is
created for causally disconnected modes.
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Introduction

- Realistic q. ss are non-inertial and they manifest relativistic
and gravitational characteristics→ relativistic q. investigations
are of basic importance, for applications in QI protocols, but
also for a better understanding of the features of our universe.
- It has been intensively investigated the evolution of q.
correlations in relativistic setting, QI processing tasks using q.
correlations; recent studies have shown that entanglement is
an important ingredient in the physics of black holes (BH).
- We describe q. field dynamics for free massless bosonic
modes in background of a Schwarzschild BH. S.: stationary
observer Alice at an asymptotically flat region (or falls freely
into BH), with associated mode A, observer Bob who hovers
near event horizon of BH with uniform acceleration, associated
with mode B, and imaginary observer anti-Bob inside event
horizon, associated with mode B̄. We assume that Alice and
Bob share a Gaussian two-mode STS and study the effect of
the Schwarzschild BH on q. entanglement in the s., by
considering different scenarios. 3 / 25



Unruh-Hawking effect

The radiation of the black hole due to the Unruh-Hawking
effect can be described by a Gaussian bosonic
amplification channel.
The metric characterising the spacetime background near
a static and asymptotically flat Schwarzschild black hole
has the following form (we employ the natural units by
setting ~ = G = c = kB = 1):

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2

+ r2
(

dθ2 + sin2 θdϕ2
)
,

(1)

where M is the mass of the black hole.
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Unruh-Hawking effect

A massless bosonic field φ in the background of the black
hole satisfies the following Klein-Gordon equation:

1√
−g

∂

∂xµ

(√
−ggµν

∂φ

∂xν

)
= 0, (2)

The bosonic field at the black hole can be divided into two
regions: inside and outside of the event horizon. By solving
the Klein-Gordon equation near the event horizon of the
Schwarzschild black hole one obtains the following
positive-frequency outgoing associated modes inside and
outside of the event horizon:

Φ+
Ω,in ∼ φ(r)eiωu,

Φ+
Ω,out ∼ φ(r)e−iωu,

(3)

where u = t − (r + 2M ln r−2M
2M ).
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Unruh-Hawking effect

Using the Schwarzschild modes (3) one can expand the
scalar field near the event horizon as follows:

φ =

∫
dΩ
[
âout

Ω Φ+
Ω,out + b̂out†

Ω Φ−Ω,out

+âin
ΩΦ+

Ω,in + b̂in†
Ω Φ−Ω,in

]
.

(4)

Here âout
Ω and b̂out†

Ω denote the boson annihilation and
antiboson creation operators acting on the state outside of
the black hole, respectively, and âin

Ω and b̂in†
Ω are the boson

annihilation and antiboson creation operators acting on the
inside states, respectively.

6 / 25



Unruh-Hawking effect

In order to find the relation between the bosonic field in the
flat spacetime and the bosonic field at the black hole, one
introduces the Unruh operators, which are related to the
Schwarzschild operators through the following Bogoliubov
transformations:

CΩ,R =
(

cosh rΩ âΩ,out − sinh rΩ b̂†Ω,in
)
,

CΩ,L =
(

cosh rΩ âΩ,in − sinh rΩ b̂†Ω,out

)
,

D†Ω,R =
(
− sinh rΩ âΩ,out + cosh rΩ b̂†Ω,in

)
,

D†Ω,L =
(
− sinh rΩ âΩ,in + cosh rΩ b̂†Ω,out

)
,

(5)

where sinh rΩ =

(
e

Ω
TH − 1

)− 1
2

and TH is the Hawking

temperature of the black hole. The Hawking temperature
parameter rΩ is a monotonically increasing function of TH .
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Unruh-Hawking effect

By introducing a generic Schwarzschild-Fock state
|nm,pq〉Ω, describing the particles and antiparticles of the
event horizon, the Unruh vacuum can be written as

|0Ω〉U =
1

cosh2 rΩ

∞∑
n,m=0

(tanh rΩ)n+m |nn,mm〉Ω, (6)

each Unruh mode Ω being mapped into a Schwarzschild
mode Ω.
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Unruh-Hawking effect

Let us consider a bipartite system, where Alice stays
stationary at the asymptotically flat region, and Bob is a
Schwarzschild observer who hovers with a uniform
acceleration near the event horizon of the black hole. The
vacuum state in the single-mode approximation, when only
bosons are living outside (i.e. only particles can be
detected as Hawking radiation) and antibosons are living
inside the regions of the event horizon, becomes (we
abreviate rΩ ≡ r for simplicity)

|0Ω〉H =
1

cosh r

∞∑
n=0

(tanh r)n|n〉out |n〉in , (7)

where |n〉out and |n〉in denote the bosonic and antibosonic
states, outside and inside of the event horizon, which are
observed by the observer Bob and, respectively, by the
imaginary observer anti-Bob.
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Unruh-Hawking effect

The right-hand side of Eq. (7) can be written as the action
of the two-mode squeezing operator Û(r) on the
associated vacuum states |0〉in and |0〉out, inside and
outside of the event horizon, respectively. The two-mode
squeezing operator is defined as

Û(r) = er
(

â†
Ω,out b̂

†
Ω,in−âΩ,out b̂Ω,in

)
. (8)

Then Eq. (7) implies that the Unruh-Hawking radiation of
the black hole can be described by a bosonic amplification
channel with squeezing operator Û(r). The squeezing
transformation Û(r) is a Gaussian operation, which
preserves the Gaussian form of the input states. The
symplectic phase-space representation of Û(r):

SB,B̄(r) =


cosh r 0 sinh r 0

0 cosh r 0 − sinh r
sinh r 0 cosh r 0

0 − sinh r 0 cosh r

 . (9)
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Unruh-Hawking effect

We consider the massless scalar field φ for two Unruh
modes A of Alice and B of Bob, who in the inertial frame
share a two-mode Gaussian state ρAB. We denote by
R = {x ,px , y ,py}T the vector of canonically conjugated
quadrature operators for the two bosonic modes and by
σAB the 4× 4 bimodal covariance matrix, with the elements
given by the second statistical moments of the quadrature
operators

σij = Tr[(RiRj + RjRi)ρAB], i , j = 1, . . . ,4, (10)

which fully characterise any Gaussian state of a bimodal
system. We neglect the first moments, since they can be
made zero by suitable local displacements in the phase
space. The phase-space operators Ri (i = 1, ..,4) satisfy
the canonical commutation relations [Ri ,Rj ] = iΩij and the
covariance matrix satisfies the uncertainty relation
σAB + iΩAB ≥ 0, where ΩAB = ⊕2

i=1

(
0 1
−1 0

)
is the

symplectic form. 11 / 25



Unruh-Hawking effect

The change from Unruh modes to Schwarzschild modes is
given by the previously introduced amplification channel, which
corresponds to the two-mode squeezing operation associated
with the symplectic transformation (9). After this amplification,
mode B is mapped into two modes, B and B̄ situated outside
and, respectively, inside of the event horizon. Therefore,
although from an inertial point of view the system is bipartite,
from the perspective of a Schwarzschild observer an additional
mode B̄ becomes relevant. Consequently, the initial bipartite
state is mapped into a state of three modes: mode A of Alice,
mode B described by Schwarzschild observer Bob, and mode
B̄, described by a hypothetical observer anti-Bob, situated
inside the event horizon of the Scharzschild black hole, and the
description of the complete system will involve all three modes
associated with the observers with the CM

σABB̄(s, r) =
[
IA ⊕ SB,B̄(r)

] [
σ0

AB(s)⊕ IB̄
] [

IA ⊕ SB,B̄(r)
]T
.

(11)
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Quantifying Gaussian quantum entanglement

In order to describe the quantum correlations between the
modes of the considered system, we suppose that Alice
and Bob share a two-mode Gaussian state of bosonic
fields, namely we assume that the state shared by Alice
and Bob is a two-mode squeezed thermal state with the
following covariance matrix in the inertial frame:

σ0
AB =


a0 0 c0 0
0 a0 0 −c0
c0 0 b0 0
0 −c0 0 b0

 , (12)

a0 = 2n1 cosh2 s + 2n2 sinh2 s + cosh 2s,

b0 = 2n2 cosh2 s + 2n1 sinh2 s + cosh 2s,
c0 = (n1 + n2 + 1) sinh 2s.

(13)

Here s is the squeezing parameter of the initial state and
n1,n2 are the associated average thermal photon numbers.
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Quantifying Gaussian quantum entanglement

An observer living outside the region of the BH is causally
disconnected from the inside region, therefore Alice, who
stays in the asymptotically flat region, and Bob, who hovers
with a uniform acceleration near the horizon of the
Schwarzschild BH, cannot access the mode B̄. In order to
obtain the covariance matrix for the outside region we have
to perform the trace over the mode that lives inside the BH,
associated with the imaginary observer anti-Bob. By
performing the trace over B̄ in the relation (11), we obtain
the covariance matrix of Alice and Bob:

σAB(s, r) =

(
A C
CT B

)
, (14)

A = a0I,

B =
[
b0 cosh2 r + sinh2 r

]
I,

C = c0 cosh r Z ,

(15)

I is the identity matrix and Z is the Z -Pauli matrix. 14 / 25



Quantifying Gaussian quantum entanglement

We now proceed to quantify the quantum entanglement
using as a measure the logarithmic negativity, defined in
terms of the symplectic invariants of the covariance matrix:

EN = − log2 g(σ), (16)

g(σ) =
1√
2
×√

detA+ detB − 2 det C −
√

(detA+ detB − 2 det C)2 − 4 detσ .

For EN ≤ 0 the state is separable and EN > 0 determines
the strength of the entanglement.
By setting the average thermal photon numbers to 0, then
the state becomes a squeezed vacuum state, which is
entangled for non-zero squeezing.
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Results

Figure: Alice-Bob Gaussian quantum entanglement
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Results

Figure: Alice-Bob Gaussian quantum entanglement
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Quantifying Gaussian quantum entanglement

Recent studies have shown that interesting results are
obtained by studying quantum correlations between
causally disconnected regions of spacetime. The study of
quantum entanglement between physically inaccessible
regions could facilitate a better understanding of the
connection between quantum information and black hole
physics. In order to obtain the covariance matrix for Bob
and anti-Bob one has to perform in Eq. (11) the partial
trace over the mode observed by Alice. Therefore, for the
causally disconnected regions we obtain:

A =
[
b0 cosh2 r + sinh2 r

]
I,

B =
[
cosh2 r + b0 sinh2 r

]
I,

CBB̄ = [(1 + b0) sinh r cosh r ] Z .

(17)
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Results

Figure: Bob-anti-Bob Gaussian quantum entanglement

19 / 25



Results

Figure: Bob-anti-Bob Gaussian quantum entanglement
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Quantifying Gaussian quantum entanglement

Finally, we analyse the existence of quantum correlations
between Alice and anti-Bob modes. In this case their
covariance matrix can be obtained by performing in Eq.
(11) the partial trace over the mode observed by Bob:

A = a0I,

B =
[
cosh2 r + b0 sinh2 r

]
I,

CAB̄ = c0 sinh rZ ,

(18)

and the calculations show that EN < 0, so that the state of
Alice and anti-Bob is always separable. We illustrate the
evolution of the logarithmic negativity, as a function of the
thermal photon number n1, for the modes associated with
all of the observers: Alice and Bob (yellow), Alice and
anti-Bob (red), Bob and anti-Bob (blue). We can notice
again that quantum entanglement for Alice-Bob and
Bob-anti-Bob is decreasing by increasing n1.
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Results

Figure: Gaussian quantum entanglement for different scenarios 22 / 25



Conclusions

We investigated influence of Hawking effect on Gaussian
entanglement for massless scalar field modes in presence of a
Schwarzschild BH in different scenarios. For a s. consisting of
an inertial observer Alice and an accelerated observer Bob,
entanglement depends on squeezing parameter of the modes,
average thermal photon numbers, Hawking temperature and
frequency. Entanglement between Alice and Bob decreases as
the Hawking temperature increases. The Hawking radiation
induces a thermal noise that causes the decay of quantum
entanglement in the system, exhibiting the sudden death
behaviour of entanglement. We found out that q. entanglement
increases by increasing the squeezing parameter of the modes,
tending to a constant value for large values of the squeezing
parameter and decreases by increasing the thermal photon
numbers. Likewise, in the limit of large frequency of the bosonic
field, the Hawking effect tends to vanish, and this means that
one can reduce the loss of q. entanglement caused by Hawking
effect by increasing the frequency of the bosonic field. 23 / 25



Conclusions

For causally disconnected modes associated with observers
Bob and anti-Bob the increase of Hawking temperature
strengthens entanglement between the modes and it is also
possible even the generation of entanglement due to the effect
of Hawking radiation. This different behaviour of entanglement
is also contoured by the fact that increase of the squeezing
parameter of the modes results in degradation of entanglement.
For initial vacuum state (s = 0) entanglement is an increasing
function of Hawking temperature, meaning that Hawking effect
alone is responsible for the generation of entanglement. In
other words Gaussian amplification operation gives rise to
entanglement as the q. correlations are distributed between
accessible and inaccessible information. This interesting result
that gives us more information about BHs by measuring the
Hawking radiation in a relativistic q. s. Entanglement decreases
with the increase of average thermal photon numbers of modes.
There is no entanglement between mode of inertial observer
Alice and mode associated with imaginary observer anti-Bob. 24 / 25



Thank You!
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